Patents by Inventor Larry A. Pierce, II

Larry A. Pierce, II has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210228078
    Abstract: A garment for detecting radiation washout (e.g., radioactivity concentrations) in organs includes a covering that wraps around and is secured to the body. The covering permits positron emission tomography-computed tomography (PET/CT) imaging of the body through the covering. The garment includes guides formed from a material that is visible in a computed tomography (CT) image of the garment, such that the guides are visible in CT images of user organs that the garment overlies. A plurality of radiation detectors are attached to the covering in a configuration customized for the body. A wiring system connects the plurality of radiation detectors to a power and data control system that is configured to transmit data from the garment to a remote service provider.
    Type: Application
    Filed: May 10, 2019
    Publication date: July 29, 2021
    Applicant: University of Washington
    Inventors: Robert S. Miyaoka, Hubert Vesselle, Robert Stewart, Robert L. Harrison, Larry A. Pierce, II
  • Patent number: 11061147
    Abstract: A method for calibrating a nuclear medicine tomography detector module using principal component analysis is based on the idea that calibration beam data lies on a one-dimensional path within the higher dimensional dataspace of output data. The module includes a weighted multiplexing circuit that generates a small number of multiplexed signals for each photon event. Calibration data for the module is generated and analyzed using several iterations of principal component analyses, to filter scattering events, noise, and other spurious signals. The direction of depth-of-interaction information has been found in the high-dimensional dataspace to be indicated by the primary principal component of the calibration data. The primary principal components, principal components from filtered datasets, intermediate thresholds, and DOI or inner product values are recorded for calibrating the module.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: July 13, 2021
    Assignee: University of Washington
    Inventors: Larry A. Pierce, II, Robert S. Miyaoka
  • Publication number: 20200278456
    Abstract: A method for calibrating a nuclear medicine tomography detector module using principal component analysis is based on the idea that calibration beam data lies on a one-dimensional path within the higher dimensional dataspace of output data. The module includes a weighted multiplexing circuit that generates a small number of multiplexed signals for each photon event. Calibration data for the module is generated and analyzed using several iterations of principal component analyses, to filter scattering events, noise, and other spurious signals. The direction of depth-of-interaction information has been found in the high-dimensional dataspace to be indicated by the primary principal component of the calibration data. The primary principal components, principal components from filtered datasets, intermediate thresholds, and DOI or inner product values are recorded for calibrating the module.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 3, 2020
    Applicant: University of Washington
    Inventors: Larry A. Pierce, II, Robert S. Miyaoka