Patents by Inventor Larry Beck

Larry Beck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901506
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: February 13, 2024
    Assignee: QuantumScape Battery, Inc.
    Inventors: Larry Beck, Cheng-Chieh Chao, Lei Cheng, Niall Donnelly, William H. Gardner, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Yang Li, Gengfu Xu
  • Publication number: 20230253561
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Application
    Filed: April 4, 2023
    Publication date: August 10, 2023
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Publication number: 20230216081
    Abstract: The present disclosure provides porous composites for manufacture of cathodes for secondary sulfur batteries and batteries containing such cathodes.
    Type: Application
    Filed: June 3, 2021
    Publication date: July 6, 2023
    Inventor: Larry Beck
  • Patent number: 11652207
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: May 16, 2023
    Assignee: A123 Systems LLC
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Publication number: 20230106403
    Abstract: Methods and systems for providing controlling in a repeatable manner a plurality of anode-free or lithium metal cells in a power-supply system. The cells are connected in series in one or more high energy density hybrid modules connected in parallel. Each high energy density hybrid module includes a corresponding hybrid module controller (HMC) and has a corresponding bi-directional DC-DC-converter, and each cell of the plurality of cells is independently measurable by the HMC. The corresponding bi-directional DC-DC-converter is used to charge and discharge of the plurality of cells in a repeatable manner to be within a selected state of charge (SOC) range that corresponds to a defined cycle life and energy density requirement.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 6, 2023
    Inventors: Stephen Glazier, Larry Beck, Steven Kaye, Mujeeb Ijaz, Hezhen Xie, Yadong Huang
  • Publication number: 20230050593
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Application
    Filed: October 6, 2022
    Publication date: February 16, 2023
    Inventors: Larry Beck, Cheng-Chieh CHAO, Lei CHENG, Niall DONNELLY, William H. GARDNER, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Yang LI, Gengfu XU
  • Patent number: 11489193
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: November 1, 2022
    Assignee: QuantumScape Battery, Inc.
    Inventors: Larry Beck, Cheng-Chieh Chao, Lei Cheng, Niall Donnelly, William H Gardner, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Yang Li, Gengfu Xu
  • Publication number: 20220328867
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, where-in these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Application
    Filed: March 30, 2022
    Publication date: October 13, 2022
    Inventors: Larry BECK, Cheng-Chieh CHAO, Lei CHENG, Niall DONNELLY, William H. GARDNER, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Yang LI, Gengfu XU
  • Publication number: 20220310994
    Abstract: This application relates to nanostructured materials having selectively permeable structures that separate a liquid phase contained within the nanostructure from a volume outside of the nanostructure, and methods of making same. Such materials may be used as electrode materials for secondary batteries or other energy storage devices.
    Type: Application
    Filed: June 18, 2020
    Publication date: September 29, 2022
    Inventors: Stephen Burkhardt, Christopher A. Simoneau, Larry Beck, Jay J. Farmer
  • Publication number: 20220310992
    Abstract: This application relates to nanostructured materials having selectively permeable structures that separate a liquid phase contained within the nanostructure from a volume outside of the nanostructure, and methods of making same. Such materials may be used in the manufacture of lithium anode compositions for secondary batteries or other energy storage devices.
    Type: Application
    Filed: June 18, 2020
    Publication date: September 29, 2022
    Inventors: Stephen Burkhardt, Christopher A. Simoneau, Larry Beck, Jay J. Farmer
  • Publication number: 20210399338
    Abstract: Set forth herein are processes for making and using electrolytes (also known as catholytes when the electrolytes are mixed with cathode active materials) for a positive electrode of an electrochemical cell. The catholytes include additives that prevent surface fluorination of lithium-stuffed garnet solid-state separators in contact with the positive electrode. Also set forth herein are electrochemical devices which include the catholytes in addition to a lithium-stuffed garnet solid-state electrolyte separator.
    Type: Application
    Filed: November 5, 2019
    Publication date: December 23, 2021
    Inventors: Thomas ARNOLD, Larry BECK, Tiffany HO, Aram YANG
  • Publication number: 20210194045
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Application
    Filed: June 23, 2017
    Publication date: June 24, 2021
    Inventors: Larry BECK, Cheng-Chieh CHAO, Lei CHENG, Niall DONNELLY, William H. GARDNER, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Yang LI, Gengfu XU
  • Publication number: 20200052298
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Application
    Filed: September 18, 2019
    Publication date: February 13, 2020
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Patent number: 10522833
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: December 31, 2019
    Assignee: A123 Systems, LLC
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Patent number: 10347937
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: July 9, 2019
    Assignee: QuantumScape Corporation
    Inventors: Larry Beck, Cheng-Chieh Chao, Lei Cheng, Niall Donnelly, William H. Gardner, Tim Holme, Will Hudson, Sriram Iyer, Oleh Karpenko, Yang Li, Gengfu Xu
  • Patent number: 10199649
    Abstract: Set forth herein are positive electrode active material compositions, e.g., lithium-rich nickel manganese cobalt oxides. The lithium-rich nickel manganese cobalt oxides set forth herein are characterized, in some examples, by an expanded unit cell which maximizes the uniform distribution of transition metals in the crystalline oxide. Also set forth herein are positive electrode thin films including lithium-rich nickel manganese cobalt oxide materials. Disclosed herein are novel and inventive methods of making and using lithium-rich nickel manganese cobalt oxide materials for lithium rechargeable batteries. Also disclosed herein are novel electrochemical devices which incorporate these materials.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 5, 2019
    Assignee: QuantumScape Corporation
    Inventors: Larry Beck, Kevin Du
  • Publication number: 20180375149
    Abstract: The instant disclosure sets forth multiphase lithium-stuffed garnet electrolytes having secondary phase inclusions, wherein these secondary phase inclusions are material(s) which is/are not a cubic phase lithium-stuffed garnet but which is/are entrapped or enclosed within a lithium-stuffed garnet. When the secondary phase inclusions described herein are included in a lithium-stuffed garnet at 30-0.1 volume %, the inclusions stabilize the multiphase matrix and allow for improved sintering of the lithium-stuffed garnet. The electrolytes described herein, which include lithium-stuffed garnet with secondary phase inclusions, have an improved sinterability and density compared to phase pure cubic lithium-stuffed garnet having the formula Li7La3Zr2O12.
    Type: Application
    Filed: June 23, 2017
    Publication date: December 27, 2018
    Inventors: Larry BECK, Cheng-Chieh CHAO, Lei CHENG, Niall DONNELLY, Will GARDNER, Tim HOLME, Will HUDSON, Sriram IYER, Oleh KARPENKO, Yang LI, Gengfu XU
  • Patent number: 9954228
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: April 24, 2018
    Assignee: A123 Systems, LLC
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Publication number: 20170229709
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Application
    Filed: April 24, 2017
    Publication date: August 10, 2017
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud
  • Patent number: 9660267
    Abstract: An LFP electrode material is provided which has improved impedance, power during cold cranking, rate capacity retention, charge transfer resistance over the current LFP based cathode materials. The electrode material comprises crystalline primary particles and secondary particles, where the primary particle is formed from a plate-shaped single-phase spheniscidite precursor and a lithium source. The LFP includes an LFP phase behavior where the LFP phase behavior includes an extended solid-solution range.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: May 23, 2017
    Assignee: A123 Systems, LLC
    Inventors: Larry Beck, Jennifer Wilson, Chuanjing Xu, Zhong-You Shi, Maha Hammoud