Patents by Inventor Larry D. Dickinson

Larry D. Dickinson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8614723
    Abstract: An apparatus for, and method of, increasing compensation sequence storage density in a projection visual display system and a projection visual display system incorporating the apparatus or the method. In one embodiment, the apparatus includes: (1) a memory containing a first compensation sequence portion that is common to a plurality of effective transmission factors and a plurality of second compensation sequence portions that are unique to a corresponding plurality of effective transmission factors and (2) a compensation sequence generator coupled to the memory and configured to construct a compensation sequence for use in the projection visual display system using the first compensation sequence portion and one of the plurality of second compensation sequence portions selected as a function of a particular effective transmission factor.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: December 24, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Roman J. Pacheco, Donald B. Doherty, Larry D. Dickinson
  • Patent number: 8493288
    Abstract: System and method for adjusting the color segment durations for colors in a color sequence in sequential color display systems. A preferred embodiment comprises receiving a desired color sequence to display, computing a scaling factor for each color in the desired color sequence based on a reference color sequence, and sequentially displaying the colors in the desired color sequence. The reference color sequence used in computing the scaling factors specifies a duration for each color in the reference color sequence, while the desired color sequence specifies a desired duration for each color in the desired color sequence. The use of a single reference color sequence to create a large number of color sequences can save a significant amount of storage space and can allow for the storage of reference color sequences to meet varying chromatic properties due to changes in the display system, user settings, and operating environment.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: July 23, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Larry D. Dickinson
  • Patent number: 8446349
    Abstract: A method and system for controlling deformable micromirror devices are provided. In accordance with one embodiment of the present disclosure, a display system includes multiple deformable micromirror devices, a buffer, and a controller. Each deformable micromirror device includes a plurality of micromirrors. The buffer is communicatively coupled, at a first interface speed, to each deformable micromirror device. The buffer is operable to communicate in parallel with the deformable micromirror devices. The controller is communicatively coupled, at a second interface speed, to the buffer. The controller is operable to receive a display input and, in response, generate a plurality signals each corresponding to an optical characteristic of the display input. The controller is further operable to sequentially communicate each of the plurality of signals through the buffer to a corresponding one of the deformable micromirror devices.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: May 21, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Sue Hui, Larry D. Dickinson, Gregory R. Basile, James A. Strain, Patrick C. Neil
  • Patent number: 8111330
    Abstract: A method and apparatus for an analog-to-digital video signal converter. The converter is controlled by a clock with controllable frequency and phase for sampling an analog signal. A circuit corrects the clock frequency using a period of a columnar frame differences as a function of columnar location. The sampling clock frequency is changed by an amount dependent on the period of the columnar differences. A second measure of the difference between successive frames is computed for a sequence of clock phases. The frequency of the clock is verified using a characteristic of the second measure. The characteristic can be the ratio of the maximum to the minimum of the second measure over selected clock phases. Other characteristics can be used such as a difference of a maximum and a minimum measure.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: February 7, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Bing Ouyang, John Michael Hayden, Troy Lane Ethridge, Anuradha Sundararajan, Larry D. Dickinson
  • Publication number: 20110043700
    Abstract: A method and apparatus for an analog-to-digital video signal converter. The converter is controlled by a clock with controllable frequency and phase for sampling an analog signal. A circuit corrects the clock frequency using a period of a columnar frame differences as a function of columnar location. The sampling clock frequency is changed by an amount dependent on the period of the columnar differences. A second measure of the difference between successive frames is computed for a sequence of clock phases. The frequency of the clock is verified using a characteristic of the second measure. The characteristic can be the ratio of the maximum to the minimum of the second measure over selected clock phases. Other characteristics can be used such as a difference of a maximum and a minimum measure.
    Type: Application
    Filed: November 2, 2010
    Publication date: February 24, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Bing Ouyang, John Michael Hayden, Troy Lane Ethridge, Anuradha Sundararajan, Larry D. Dickinson
  • Patent number: 7825990
    Abstract: A method and apparatus for an analog-to-digital video signal converter. The converter is controlled by a clock with controllable frequency and phase for sampling an analog signal. A circuit corrects the clock frequency using a period of a columnar frame differences as a function of columnar location. The sampling clock frequency is changed by an amount dependent on the period of the columnar differences. A second measure of the difference between successive frames is computed for a sequence of clock phases. The frequency of the clock is verified using a characteristic of the second measure. The characteristic can be the ratio of the maximum to the minimum of the second measure over selected clock phases. Other characteristics can be used such as a difference of a maximum and a minimum measure.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: November 2, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: Bing Ouyang, John Michael Hayden, Troy Lane Ethridge, Anuradha Sundararajan, Larry D. Dickinson
  • Patent number: 7733424
    Abstract: A method and apparatus for an analog-to-digital video signal converter. The converter is controlled by a clock with controllable frequency and phase for sampling an analog signal. A measure of the difference between successive frames of the image is computed for a sequence of clock phases. The measure can be a count taken over pixels of the magnitude of the difference between a pixel in one frame and the corresponding pixel in a following frame exceeding a threshold value. The frequency of the clock is verified using a characteristic of the frame difference. The characteristic can be the ratio of the maximum measure to the minimum measure over the selected clock phases. Other characteristics can be used such as a difference of a maximum and a minimum measure.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: June 8, 2010
    Assignee: Texas Instruments Incorporated
    Inventors: John Michael Hayden, Bing Ouyang, Troy Lane Ethridge, Anuradha Sundararajan, Larry D. Dickinson
  • Publication number: 20090135314
    Abstract: A method and system for controlling deformable micromirror devices are provided. In accordance with one embodiment of the present disclosure, a display system includes multiple deformable micromirror devices, a buffer, and a controller. Each deformable micromirror device includes a plurality of micromirrors. The buffer is communicatively coupled, at a first interface speed, to each deformable micromirror device. The buffer is operable to communicate in parallel with the deformable micromirror devices. The controller is communicatively coupled, at a second interface speed, to the buffer. The controller is operable to receive a display input and, in response, generate a plurality signals each corresponding to an optical characteristic of the display input. The controller is further operable to sequentially communicate each of the plurality of signals through the buffer to a corresponding one of the deformable micromirror devices.
    Type: Application
    Filed: November 27, 2007
    Publication date: May 28, 2009
    Applicant: Texas Instruments Incorporated
    Inventors: Sue Hui, Larry D. Dickinson, Gregory R. Basile, James A. Strain, Patrick C. Neil
  • Publication number: 20080151195
    Abstract: An apparatus for, and method of, increasing compensation sequence storage density in a projection visual display system and a projection visual display system incorporating the apparatus or the method. In one embodiment, the apparatus includes: (1) a memory containing a first compensation sequence portion that is common to a plurality of effective transmission factors and a plurality of second compensation sequence portions that are unique to a corresponding plurality of effective transmission factors and (2) a compensation sequence generator coupled to the memory and configured to construct a compensation sequence for use in the projection visual display system using the first compensation sequence portion and one of the plurality of second compensation sequence portions selected as a function of a particular effective transmission factor.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 26, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Roman J. Pacheco, Donald B. Doherty, Larry D. Dickinson
  • Publication number: 20080084369
    Abstract: System and method for adjusting the color segment durations for colors in a color sequence in sequential color display systems. A preferred embodiment comprises receiving a desired color sequence to display, computing a scaling factor for each color in the desired color sequence based on a reference color sequence, and sequentially displaying the colors in the desired color sequence. The reference color sequence used in computing the scaling factors specifies a duration for each color in the reference color sequence, while the desired color sequence specifies a desired duration for each color in the desired color sequence. The use of a single reference color sequence to create a large number of color sequences can save a significant amount of storage space and can allow for the storage of reference color sequences to meet varying chromatic properties due to changes in the display system, user settings, and operating environment.
    Type: Application
    Filed: October 10, 2006
    Publication date: April 10, 2008
    Inventor: Larry D. Dickinson