Patents by Inventor Larry D. Hartsough

Larry D. Hartsough has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6500321
    Abstract: An apparatus and method for controlling and optimizing a non-planar target shape of a sputtering magnetron system are employed to minimize the redeposition of the sputtered material and optimize target erosion. The methodology is based on the integration of sputtered material from each point of the target according to its solid angle view of the rest of the target. The prospective target's geometry is optimized by analytically comparing and evaluating the methodology's results of one target geometry against that of another geometry, or by simply altering the first geometry and recalculating and comparing the results of the first geometry against the altered geometry. The target geometries may be of many different shapes including trapezoidal, cylindrical, parabolic, and elliptical, depending upon the optimum process parameters desired.
    Type: Grant
    Filed: March 2, 2000
    Date of Patent: December 31, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Kaihan A. Ashtiani, Larry D. Hartsough, Richard S. Hill, Karl B. Levy, Robert M. Martinson
  • Patent number: 6497796
    Abstract: A magnetron source comprises a hollow cathode with a non-planar target. By using a magnet between the cathode and a substrate, plasma can be controlled to achieve high ionization levels, good step coverage, and good process uniformity. Step coverage uniformity is also improved by controlling the magnetic fields, and thus the flow of ions and electrons, near the plane of the substrate.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: December 24, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Kaihan A. Ashtiani, Karl B. Levy, Kwok F. Lai, Andrew L. Nordquist, Larry D. Hartsough
  • Patent number: 6444105
    Abstract: A novel hollow cathode magnetron source is disclosed. The source comprises a hollow cathode with a non-planar target. By using a magnet between the cathode and a substrate, plasma can be controlled to achieve high ionization levels, good step coverage, and good process uniformity.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: September 3, 2002
    Assignee: Novellus Systems, Inc.
    Inventors: Kwok F. Lai, Andrew L. Nordquist, Kaihan A. Ashtiani, Larry D. Hartsough, Karl B. Levy
  • Patent number: 6179973
    Abstract: A novel hollow cathode magnetron source is disclosed. The source comprises a hollow cathode with a non-planar target. By using a magnet between the cathode and a substrate, plasma can be controlled to achieve high ionization levels, good step coverage, and good process uniformity.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: January 30, 2001
    Assignee: Novellus Systems, Inc.
    Inventors: Kwok F. Lai, Andrew L. Nordquist, Kaihan A. Ashtiani, Larry D. Hartsough, Karl B. Levy
  • Patent number: 5985115
    Abstract: An internally cooled target assembly for use in a magnetron sputtering apparatus is provided. The internally cooled target assembly includes a cooling plate that is configured to promote highly turbulent coolant flow through the target assembly to achieve efficient and uniform target cooling. The volume of coolant required to cool the target assembly is minimized.
    Type: Grant
    Filed: April 11, 1997
    Date of Patent: November 16, 1999
    Assignee: Novellus Systems, Inc.
    Inventors: Larry D. Hartsough, David J. Harra, Ronald R. Cochran, Mingwei Jiang
  • Patent number: 5503676
    Abstract: A method and apparatus for removing extraneous deposits from particle control surfaces in a microwave plasma generating device. An annular magnetron plasma is formed in contact with a particle control surface having a shape which intersects 200-500 G lines of magnetic induction. The magnetron plasma is scanned across particle control surfaces on a horn and chuck by increasing the current to the main coil and/or mirror coil of the apparatus. As the magnetron plasma moves across the particle control surfaces, the plasma reacts with the extraneous deposits and etches the deposits off of the particle control surfaces.
    Type: Grant
    Filed: February 8, 1995
    Date of Patent: April 2, 1996
    Assignee: Lam Research Corporation
    Inventors: Paul K. Shufflebotham, Larry D. Hartsough, Dean R. Denison
  • Patent number: 5417833
    Abstract: A magnetron sputter apparatus is disclosed which includes a rotatable generally heart-shaped, closed-loop magnet array behind the target and in front of a pair of separately driven stationary electromagnets. The apparatus is optimized to produce a sputtered film on a planar substrate having desired film characteristics such as uniformity of thickness, good step coverage, and good via filling and efficient utilization of the target. The shape of the generally heart-shaped array includes a flattened tip forming an arc of a circle centered on the axis of rotation and concave cusps in the lobes of the heart-shape. The electromagnets are used to increase target utilization at its center and to compensate for the change in shape of the target and distance from the target to the substrate with depletion.
    Type: Grant
    Filed: April 14, 1993
    Date of Patent: May 23, 1995
    Assignee: Varian Associates, Inc.
    Inventors: David J. Harra, Larry D. Hartsough
  • Patent number: 4420385
    Abstract: A method and apparatus for forming a thin film on a substrate by sputtering of a material from a cathode, which material is subsequently reacted to form the thin film. A process chamber has a sputter zone which contains a sputter electrode assembly and in which an inert sputtering atmosphere is injected. Isolation means separates the sputtering zone from a reaction zone of the process chamber, into which a chemically reactive atmosphere is injected, and prevents the chemically reactive atmosphere from entering the sputtering zone. A substrate receives a sputtered material in the sputtering zone, and is subsequently transferred to the reaction zone where the sputtered material is contacted by and reacts with the chemically reactive atmosphere therein to form a reacted thin film.
    Type: Grant
    Filed: April 15, 1983
    Date of Patent: December 13, 1983
    Assignee: Gryphon Products
    Inventor: Larry D. Hartsough
  • Patent number: 4260649
    Abstract: Method and apparatus for chemical treatment of workpieces is disclosed wherein a workpiece to be processed is exposed to a controlled gaseous atmosphere containing a gaseous constituent to be dissociated by laser radiation to produce a gaseous reactant product for reaction with a surface of the workpiece for chemical processing of the workpiece. The wavelength of the laser beam radiation is selected for splitting only the desired bonds to produce only the desired reactant product without producing undesired by-products which could deleteriously interfere with the desired chemical reaction.
    Type: Grant
    Filed: May 7, 1979
    Date of Patent: April 7, 1981
    Assignee: The Perkin-Elmer Corporation
    Inventors: Dean R. Dension, Larry D. Hartsough
  • Patent number: 4204936
    Abstract: An improved method and apparatus for attaching a target to the cathode of a cathode sputtering system is disclosed which includes a ferromagnetic retainer which releasably clamps the target to the cathode by virtue of its attraction to existing permanent magnets in the cathode assembly. An optional ferromagnetic ring may also be provided around the periphery of the target to further hold the target to the cathode assembly.
    Type: Grant
    Filed: March 29, 1979
    Date of Patent: May 27, 1980
    Assignee: The Perkin-Elmer Corporation
    Inventor: Larry D. Hartsough
  • Patent number: 4125446
    Abstract: A method for depositing aluminum layers having a predetermined reflectance or a predetermined resistivity is disclosed. The layers are deposited by sputtering a target comprising 90% or greater aluminum. The parameters which must be controlled include the partial pressure of reactive gases, such as nitrogen, hydrogen, oxygen and water vapor, which are minor constituents of the sputtering gas, the total sputtering gas pressure, the substrate temperature, and the deposition rate.
    Type: Grant
    Filed: August 15, 1977
    Date of Patent: November 14, 1978
    Assignee: Airco, Inc.
    Inventors: Larry D. Hartsough, Paul S. McLeod