Patents by Inventor Larry Epp

Larry Epp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7446044
    Abstract: Switches having an in situ grown carbon nanotube as an element thereof, and methods of fabricating such switches. A carbon nanotube is grown in situ in mechanical connection with a conductive substrate, such as a heavily doped silicon wafer or an SOI wafer. The carbon nanotube is electrically connected at one location to a terminal. At another location of the carbon nanotube there is situated a pull electrode that can be used to elecrostatically displace the carbon nanotube so that it selectively makes contact with either the pull electrode or with a contact electrode. Connection to the pull electrode is sufficient to operate the device as a simple switch, while connection to a contact electrode is useful to operate the device in a manner analogous to a relay. In various embodiments, the devices disclosed are useful as at least switches for various signals, multi-state memory, computational devices, and multiplexers.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: November 4, 2008
    Assignee: California Institute of Technology
    Inventors: Anupama B. Kaul, Eric W. Wong, Richard L. Baron, Larry Epp
  • Publication number: 20080233744
    Abstract: Switches having an in situ grown carbon nanotube as an element thereof, and methods of fabricating such switches. A carbon nanotube is grown in situ in mechanical connection with a conductive substrate, such as a heavily doped silicon wafer or an SOI wafer. The carbon nanotube is electrically connected at one location to a terminal. At another location of the carbon nanotube there is situated a pull electrode that can be used to electrostatically displace the carbon nanotube so that it selectively makes contact with either the pull electrode or with a contact electrode. Connection to the pull electrode is sufficient to operate the device as a simple switch, while connection to a contact electrode is useful to operate the device in a manner analogous to a relay. In various embodiments, the devices disclosed are useful as at least switches for various signals, multi-state memory, computational devices, and multiplexers.
    Type: Application
    Filed: September 19, 2006
    Publication date: September 25, 2008
    Applicant: California Institute of Technology
    Inventors: Anupama B. Kaul, Eric W. Wong, Richard L. Baron, Larry Epp
  • Patent number: 6803840
    Abstract: A tunable nanomechanical oscillator device and system is provided. The nanomechanical oscillator device comprising at least one nanoresonator, such as a suspended nanotube, designed such that injecting charge density into the tube (e.g. by applying a capacitively-cuopled voltage bias) changes the resonant frequency of the nanotube, and where exposing the resonator to an RF bias induces oscillitory movement in the suspended portion of the nanotube, forming a nanoscale resonator, as well as a force sensor when operated in an inverse mode. A method of producing an oriented nanoscale resonator structure with integrated electrodes is also provided.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: October 12, 2004
    Assignee: California Institute of Technology
    Inventors: Brian D. Hunt, Flavio Noca, Michael E. Hoenk, Larry Epp, Daniel J. Hoppe, Robert S. Kowalcyk, Daniel S. Choi
  • Patent number: 6737939
    Abstract: A tunable nanomechanical resonator system comprising an array of nanofeatures, such as nanotubes, where the nanofeatures are in signal communication with means for inducing a difference in charge density in the nanofeature such that the mechanical resonant frequency of the nanofeature can be tuned, and where the nanofeature is in signal communication with a waveguide or other RF bias conduit such that an RF signal having a frequency corresponding to the mechanical resonant frequency of the array will couple to the array thereby inducing resonant motion in the array of nanofeatures, and subsequently coupling to an output waveguide, forming a nanoscale RF filter is provided. A method of producing a nanoscale RF filter structure controllably positioned and oriented with a waveguide and integrated electrodes is also provided.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: May 18, 2004
    Assignees: California Institute of Technology, Brown University Research Foundation
    Inventors: Daniel J. Hoppe, Brian D. Hunt, Flavio Noca, Jingming Xu, Larry Epp, Michael E. Hoenk
  • Publication number: 20020167375
    Abstract: A tunable nanomechanical resonator system comprising an array of nanofeatures, such as nanotubes, where the nanofeatures are in signal communication with means for inducing a difference in charge density in the nanofeature such that the mechanical resonant frequency of the nanofeature can be tuned, and where the nanofeature is in signal communication with a waveguide or other RF bias conduit such that an RF signal having a frequency corresponding to the mechanical resonant frequency of the array will couple to the array thereby inducing resonant motion in the array of nanofeatures, and subsequently coupling to an output waveguide, forming a nanoscale RF filter is provided. A method of producing a nanoscale RF filter structure controllably positioned and oriented with a waveguide and integrated electrodes is also provided.
    Type: Application
    Filed: April 1, 2002
    Publication date: November 14, 2002
    Inventors: Daniel J. Hoppe, Brian D. Hunt, Flavio Noca, Jingming Xu, Larry Epp, Michael E. Hoenk
  • Publication number: 20020167374
    Abstract: A tunable nanomechanical oscillator device and system is provided. The nanomechanical oscillator device comprising at least one nanoresonator, such as a suspended nanotube, designed such that injecting charge density into the tube (e.g. by applying a capacitively-cuopled voltage bias) changes the resonant frequency of the nanotube, and where exposing the resonator to an RF bias induces oscillitory movement in the suspended portion of the nanotube, forming a nanoscale resonator, as well as a force sensor when operated in an inverse mode. A method of producing an oriented nanoscale resonator structure with integrated electrodes is also provided.
    Type: Application
    Filed: April 1, 2002
    Publication date: November 14, 2002
    Inventors: Brian D. Hunt, Flavio Noca, Michael E. Hoenk, Larry Epp, Daniel J. Hoppe, Robert S. Kowalcyk, Daniel S. Choi