Patents by Inventor Larry J. Gustavson

Larry J. Gustavson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6312635
    Abstract: Orthopaedic wires, cables, and methods of making them are based on the discovery that, in clinical orthopaedic applications, material toughness and fatigue strength are as important or more important than ultimate tensile strength. The wires and cables of the invention have a tensile strength lower than 280 ksi, but higher than 175 ksi. The presently preferred wires and cables have a tensile strength of 210-240 ksi. The fatigue strength of the wires and cables of the invention is between six and ten times that of other high strength cables used in orthopaedic applications. One method of making the wires and cables includes annealing high tensile strength wire or cable to reduce its tensile strength and thereby increase its fatigue strength. Another method is to cold work fully annealed wire or cable to the extent of decreasing its cross section by approximately 18%.
    Type: Grant
    Filed: February 9, 2000
    Date of Patent: November 6, 2001
    Assignee: Stryker Technologies Corporation
    Inventors: Kathy K. Wang, Larry J. Gustavson
  • Patent number: 6045909
    Abstract: Orthopaedic wires, cables, and methods of making them are based on the discovery that, in clinical orthopaedic applications, material toughness and fatigue strength are as important or more important than ultimate tensile strength. The wires and cables of the invention have a tensile strength lower than 280 ksi, but higher than 175 ksi. The presently preferred wires and cables have a tensile strength of 210-240 ksi. The fatigue strength of the wires and cables of the invention is between six and ten times that of other high strength cables used in orthopaedic applications. One method of making the wires and cables includes annealing high tensile strength wire or cable to reduce its tensile strength and thereby increase its fatigue strength. Another method is to cold work fully annealed wire or cable to the extent of decreasing its cross section by approximately 18%.
    Type: Grant
    Filed: November 7, 1997
    Date of Patent: April 4, 2000
    Assignee: Stryker Technologies Corporation
    Inventors: Kathy K. Wang, Larry J. Gustavson
  • Patent number: 5108432
    Abstract: A prosthetic part for use as an orthopedic implant has a base member defining an outer surface for implantation adjacent a prepared bone surface. The outer surface includes a recessed area having a predetermined shape and depth. A first rigid plate having this predetermined shape and having a plurality of elongated slots formed therein is fixedly attached within the recesssed area of the base member. A second rigid plate also having the same predetermined shape as the recess and also having a plurality of elongated slots formed therein is attached to the first rigid plate. The elongated slots of the second plate are angularly offset with respect to the elongated slots in the first plate to produce a controlled porosity. The thicknesses of the first and second plates are predetermined so that the outer surface of the second plate is continuous with the non-recessed outer surface of the base member.
    Type: Grant
    Filed: June 24, 1990
    Date of Patent: April 28, 1992
    Assignee: Pfizer Hospital Products Group, Inc.
    Inventor: Larry J. Gustavson
  • Patent number: 5108435
    Abstract: A prosthetic part for use as an orthopaedic implant has a cast metal base member and a tissue ingrowth surface spaced outwardly therefrom. The tissue ingrowth surface is in the form of a cast metal lattice element which covers at least a part of the outer surface of the base member. The cast metal lattice element is cast simultaneously and integrally with the base member from the same metal. This metal may be any well known castable material for orthopaedic implants such as Vitallium or titanium. The lattice element is in the form of a grid-like mesh which includes spaced members cast integrally with the wire mesh and the base member to space the lattice element a predetermined distance above the prosthesis surface. An investment casting technique wherein a meltable material is coated with a ceramic casting shell is utilized to produce the integrally cast orthopaedic implant and tissue ingrowth surface.
    Type: Grant
    Filed: November 19, 1990
    Date of Patent: April 28, 1992
    Assignee: Pfizer Hospital Products Group, Inc.
    Inventors: Larry J. Gustavson, Melvin M. Schwartz
  • Patent number: 4952236
    Abstract: Method for preparing a high strength, low modulus, ductile, biocompatible titanium base alloy containing one or more isomorphous beta stabilizers, eutectoid beta stabilizers and optional alpha stabilizers, characterized by a modulus of elasticity not exceeding 100 GPa; comprising blending pre-selected amounts of the alloying ingredients, melting the blend in a plasma arc furnace, allowing the melt to cool and solidify, vaccum arc remelting and thermomechanically processing the resulting solid to provide the desired alloy.
    Type: Grant
    Filed: May 25, 1989
    Date of Patent: August 28, 1990
    Assignee: Pfizer Hospital Products Group, Inc.
    Inventors: Kathy K. Wang, Larry J. Gustavson, John H. Dumbleton
  • Patent number: 4857269
    Abstract: A high strength, low modulus, ductile, biocompatible titanium base alloy containing one or more isomorphous beta stabilizers, eutectoid beta stabilizers and optional alpha stabilizers, characterized by a modulus of elasticity not exceeding 100 GPa; a method for the preparation of said alloy and prostheses made from said alloy.
    Type: Grant
    Filed: September 9, 1988
    Date of Patent: August 15, 1989
    Assignee: Pfizer Hospital Products Group Inc.
    Inventors: Kathy K. Wang, Larry J. Gustavson, John H. Dumbleton
  • Patent number: 4714468
    Abstract: A dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization containing a fine oxide dispersion, and characterized, after fabrication by gas atomization, thermomechanical processing and further high temperature exposure, by excellent corrosion resistance, high fatigue strength, high ductility and high temperature stability; a process for producing said alloy and prostheses formed from said alloy.
    Type: Grant
    Filed: January 27, 1987
    Date of Patent: December 22, 1987
    Assignee: Pfizer Hospital Products Group Inc.
    Inventors: Kathy K. Wang, Larry J. Gustavson, John H. Dumbleton
  • Patent number: 4668290
    Abstract: A dispersion strengthened cobalt-chromium-molybdenum alloy produced by gas atomization containing a fine oxide dispersion, and characterized, after fabrication by gas atomization, thermomechanical processing and further high temperature exposure, by excellent corrosion resistance, high fatigue strength, high ductility and high temperature stability; a process for producing said alloy and prostheses formed from said alloy.
    Type: Grant
    Filed: August 13, 1985
    Date of Patent: May 26, 1987
    Assignee: Pfizer Hospital Products Group Inc.
    Inventors: Kathy K. Wang, Larry J. Gustavson, John H. Dumbleton