Patents by Inventor Larry Michael Killeen

Larry Michael Killeen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230190470
    Abstract: Implantable devices formed of materials which are not readily imageable, and which may shift from a delivery configuration to a deployment configuration upon deployment, are delivered and deployed with a deployment/delivery device having sensors generating a signal indicating contact of the delivery/deployment device with tissue to guarantee purchase of the implantable device with tissue upon deployment. The implantable device may be a tissue anchor with talons which shift from a delivery configuration to a deployed configuration. The sensors may be positioned along a distal end of the delivery/deployment device to indicate purchase of the device with tissue, to ensure purchase of the talons with tissue upon deployment. The sensors may include at least three sensors, which may be spaced apart from one another, to indicate full contact of the distal end of the delivery/deployment device with tissue. The sensors may optionally be aligned with the talons.
    Type: Application
    Filed: August 30, 2022
    Publication date: June 22, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Troy Anthony Giese, Joel T. Eggert, Christopher J. Koudela, Larry Michael Killeen, Nicholas Barron, Matthew P. Jones, Kristen Elizabeth Ott, James K. Cawthra, JR., Charanjit S. Rihal, Mackram F. Eleid
  • Publication number: 20230141396
    Abstract: Embodiments herein relate to implantable medical devices including a power subunit with a first biocompatible electrically conductive shell configured for direct contact with an in vivo environment. In some embodiments a lithium anode can be disposed within the first biocompatible electrically conductive shell in direct electrical communication with a feedthrough pin, wherein the feedthrough pin is electrically isolated from the first biocompatible electrically conductive shell. A cathode can also be disposed within the first biocompatible electrically conductive shell and can be in direct electrical communication with the first biocompatible electrically conductive shell. The first biocompatible electrically conductive shell has a positive electrical potential. The implantable medical device further includes an electronics control subunit with a control circuit disposed within a second biocompatible electrically conductive shell. Other embodiments are included herein.
    Type: Application
    Filed: October 12, 2022
    Publication date: May 11, 2023
    Inventors: Troy Anthony Giese, Ignacio Chi, Michael J. Root, Larry Michael Killeen
  • Publication number: 20230020981
    Abstract: A fixation device for engaging heart valve leaflets includes a center member with a first end, an opposite second end, and a length extending therebetween, first and second arms each having a first free end and an opposite second end, the second end of each arm extending from the second end of the center member, the first and second arms biased in a first position adjacent the center member and moveable to a second position spaced apart from the center member, and an actuator configured to move the first and second arms from the first position to the second position.
    Type: Application
    Filed: July 13, 2022
    Publication date: January 19, 2023
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Troy Anthony Giese, Michael Mathias Freking, Larry Michael Killeen
  • Patent number: 11471691
    Abstract: Embodiments herein relate to implantable medical devices including a power subunit with a first biocompatible electrically conductive shell configured for direct contact with an in vivo environment. In some embodiments a lithium anode can be disposed within the first biocompatible electrically conductive shell in direct electrical communication with a feedthrough pin, wherein the feedthrough pin is electrically isolated from the first biocompatible electrically conductive shell. A cathode can also be disposed within the first biocompatible electrically conductive shell and can be in direct electrical communication with the first biocompatible electrically conductive shell. The first biocompatible electrically conductive shell has a positive electrical potential. The implantable medical device further includes an electronics control subunit with a control circuit disposed within a second biocompatible electrically conductive shell. Other embodiments are included herein.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: October 18, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Troy Anthony Giese, Ignacio Chi, Michael J. Root, Larry Michael Killeen
  • Patent number: 11400301
    Abstract: Embodiments herein relate to implantable medical devices including a welded joint with reduced residual stress. In a first aspect, an implantable medical device is included having a power subunit comprising a first biocompatible electrically conductive shell, an anode disposed therein, a cathode disposed therein, and a lid. The implantable medical device can further include an electronics control subunit comprising a second biocompatible electrically conductive shell, and a control circuit disposed therein. Both of the first and second biocompatible electrically conductive shells can include first and second opposed wide sides, first and second opposed narrow sides, and four rounded corners. The first shell can be welded to the lid around a perimeter thereof forming a weld line. The weld line can have a weld line terminus and the weld line terminus can be positioned on a narrow side or a rounded corner. Other embodiments are also included herein.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: August 2, 2022
    Assignee: Cardiac Pacemakers, Inc.
    Inventors: Troy Anthony Giese, Steven Lawrence Frandrup, Emily Tubbs, Larry Michael Killeen, Jean M. Bobgan, David P. Stieper
  • Publication number: 20200254264
    Abstract: Embodiments herein relate to implantable medical devices including a welded joint with reduced residual stress. In a first aspect, an implantable medical device is included having a power subunit comprising a first biocompatible electrically conductive shell, an anode disposed therein, a cathode disposed therein, and a lid. The implantable medical device can further include an electronics control subunit comprising a second biocompatible electrically conductive shell, and a control circuit disposed therein. Both of the first and second biocompatible electrically conductive shells can include first and second opposed wide sides, first and second opposed narrow sides, and four rounded corners. The first shell can be welded to the lid around a perimeter thereof forming a weld line. The weld line can have a weld line terminus and the weld line terminus can be positioned on a narrow side or a rounded corner. Other embodiments are also included herein.
    Type: Application
    Filed: February 4, 2020
    Publication date: August 13, 2020
    Inventors: Troy Anthony Giese, Steven Lawrence Frandrup, Emily Tubbs, Larry Michael Killeen, Jean M. Bobgan, David P. Stieper
  • Publication number: 20200238095
    Abstract: Embodiments herein relate to implantable medical devices including a power subunit with a first biocompatible electrically conductive shell configured for direct contact with an in vivo environment. In some embodiments a lithium anode can be disposed within the first biocompatible electrically conductive shell in direct electrical communication with a feedthrough pin, wherein the feedthrough pin is electrically isolated from the first biocompatible electrically conductive shell. A cathode can also be disposed within the first biocompatible electrically conductive shell and can be in direct electrical communication with the first biocompatible electrically conductive shell. The first biocompatible electrically conductive shell has a positive electrical potential. The implantable medical device further includes an electronics control subunit with a control circuit disposed within a second biocompatible electrically conductive shell. Other embodiments are included herein.
    Type: Application
    Filed: January 23, 2020
    Publication date: July 30, 2020
    Inventors: Troy Anthony Giese, Ignacio Chi, Michael J. Root, Larry Michael Killeen