Patents by Inventor Larry Shelestak

Larry Shelestak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7659221
    Abstract: A colorant for a high redox glass composition comprising: total iron (Fe2O3) 0 to 1.1 weight percent; and from 0.0001 to 0.15 weight percent of at least one of the following: Cu nanostructures, Au nanostructures, or Ag nanostructures, wherein the weight percents are based on the total weight of the glass composition. The colorant of the invention can be used to make glass compositions having various colors.
    Type: Grant
    Filed: January 21, 2008
    Date of Patent: February 9, 2010
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Mehran Arbab, Larry Shelestak, Songwei Lu
  • Publication number: 20080163649
    Abstract: A colorant for a high redox glass composition comprising: total iron (Fe2O3) 0 to 1.1 weight percent; and from 0.0001 to 0.15 weight percent of at least one of the following: Cu nanostructures, Au nanostructures, or Ag nanostructures, wherein the weight percents are based on the total weight of the glass composition. The colorant of the invention can be used to make glass compositions having various colors.
    Type: Application
    Filed: January 21, 2008
    Publication date: July 10, 2008
    Inventors: Mehran Arbab, Larry Shelestak, Songwei Lu
  • Publication number: 20070236798
    Abstract: An antireflective coating is disclosed. The antireflective coating includes a first high index of refraction coating layer; a first low index of refraction coating layer over the first high index of refraction coating layer; a second high index of refraction coating layer over the first low index of refraction coating layer; and a second low index of refraction coating layer over the second high index of refraction coating layer, wherein the first high index of refraction coating layer has an optical thickness defined by the following equation within a range of ±25%: [?2.1643×(optical thickness of the second low index of refraction coating layer)2]+[4.6684×(optical thickness of the second low index of refraction coating layer)]?2.2187, or the first low index of refraction coating layer has an optical thickness defined by the following equation within a range of ±25%: [2.0567×(optical thickness of the second low index of refraction coating)2]?[3.
    Type: Application
    Filed: April 5, 2006
    Publication date: October 11, 2007
    Inventors: Larry Shelestak, James Thiel
  • Publication number: 20070214833
    Abstract: A glass composition for forming a blue colored glass is disclosed. The glass composition is made up of a base glass portion, iron oxide, and at least one first additive compound selected from Nd2O3 in an amount up to 1 weight percent and/or CuO in an amount up to 0.5 weight percent. The base glass portion has the following components: SiO2 from 66 to 75 weight percent; Na2O from 10 to 20 weight percent; CaO from 5 to 15 weight percent; MgO from 0 to 5 weight percent; Al2O3 from 0 to 5 weight percent; B2O3 from 0 to 5 weight percent; and K2O from 0 to 5 weight percent. The total iron in the glass composition ranges from 0.3 to 1.2 weight percent, and the glass composition has a redox ratio ranging from 0.15 to 0.65.
    Type: Application
    Filed: March 2, 2007
    Publication date: September 20, 2007
    Inventors: Mehran Arbab, Robert Heithoff, Larry Shelestak, Dennis Smith
  • Publication number: 20070161492
    Abstract: A glass composition is disclosed. The glass composition includes base glass composition including SiO2 from 65 to 75 weight percent, Na2O from 10 to 20 weight percent, CaO from 5 to 15 weight percent, MgO from 0 to 5 weight percent, Al2O3 from 0 to 5 weight percent, K2O from 0 to 5 weight percent, and BaO from 0 to 1 weight percent, and a colorant and property modifying portion including total iron from up to 0.02 weight percent, CeO2 from 0.05 weight percent to 1.5 weight percent, CoO up to 50 PPM, Se up to 15 PPM, Cr2O3 up to 500 PPM, CuO up to 0.5 weight percent, V2O5 up to 0.3 weight percent, TiO2 up to 1 weight percent, NiO up to 200 PPM, Er2O3 up to 3 weight percent, MnO2 up to 0.6 weight percent, and Nd2O3 up to 2 weight percent, wherein the glass composition has a redox ratio up to 0.55.
    Type: Application
    Filed: January 12, 2006
    Publication date: July 12, 2007
    Inventors: Dennis Smith, Larry Shelestak
  • Publication number: 20070099788
    Abstract: A glass composition that includes a base glass composition including: SiO2 from 65 to 75 weight percent, Na2O from 10 to 20 weight percent, CaO from 5 to 15 weight percent, MgO from 0 to 5 weight percent, Al2O3 from 0 to 5 weight percent, K2O from 0 to 5 weight percent and BaO 0 to 1 weight percent, and a colorant and property modifying portion including total iron from 0.25 to 0.9 weight percent, Cr2O3 from 6 PPM to 400 PPM, Er2O3 from 0.3 to 3.0 weight percent, and TiO2 from 0.1 to 0.8 weight percent, wherein the glass composition has a redox ratio ranging from 0.15 to 0.62.
    Type: Application
    Filed: November 2, 2005
    Publication date: May 3, 2007
    Inventors: Larry Shelestak, Dennis Smith, James Baldauff
  • Publication number: 20070099789
    Abstract: A glass composition that includes a base glass composition including: SiO2 from 65 to 75 weight percent, Na2O from 10 to 20 weight percent, CaO from 5 to 15 weight percent, MgO from 0 to 5 weight percent, Al2O3 from 0 to 5 weight percent, K2O from 0 to 5 weight percent and BaO from 0 to 1 weight percent, and a colorant and property modifying portion including total iron from 0.5 to 0.8 weight percent, Er2O3 from 0.05 to 0.5 weight percent, Se from 1 PPM to 4 PPM, and CoO from 1 PPM to 15 PPM, wherein the glass composition has a redox ratio ranging from 0.25 to 0.35.
    Type: Application
    Filed: November 2, 2005
    Publication date: May 3, 2007
    Inventor: Larry Shelestak
  • Publication number: 20070054796
    Abstract: A novel glass composition is disclosed. The glass composition includes a base glass composition made up of SiO2 from 65 to 75 weight percent, Na2O from 10 to 20 weight percent, CaO from 5 to 15 weight percent, MgO from 0 to 5 weight percent, Al2O3 from 0 to 5 weight percent, K2O from 0 to 5 weight percent, B2O3 0 to 5%, and MnO2 0 to 0.5%, and a colorant and property modifying material portion made up of total iron up to 0.65 weight percent, Se ranging from 2 PPM to 10 PPM, at least one UV absorber selected from CeO2, V2O5, TiO2 and MoO3, CoO up to 20 PPM, and Cr2O3 up to 75 PPM, wherein the glass composition has a redox ratio ranging from 0.2 to 0.6.
    Type: Application
    Filed: September 8, 2005
    Publication date: March 8, 2007
    Inventors: Larry Shelestak, Mehran Arbab, Dennis Smith
  • Publication number: 20070027021
    Abstract: A glass composition that includes a base glass composition including: SiO2 from 65 to 75 weight percent, Na2O from 10 to 20 weight percent, CaO from 5 to 15 weight percent, MgO from 0 to 5 weight percent, Al2O3 from 0 to 5 weight percent, K2O from 0 to 5 weight percent, and a colorant and property modifying portion including total iron ranging from of equal to or less than 0.6 weight percent; and TiO2 ranging from 0.1 to 1.0 weight percent, wherein the redox ratio ranges from 0.33 to 0.45 and the weight percents are based on the total weight of the composition.
    Type: Application
    Filed: July 29, 2005
    Publication date: February 1, 2007
    Inventor: Larry Shelestak
  • Publication number: 20070025000
    Abstract: A method for modifying the appearance of a substrate is disclosed. The method includes providing a substrate having first and second opposing surfaces and depositing a reflectance modifying coating on at least a portion of the first surface of the substrate, wherein the second surface has a visible light reflectance (R1) ranging from 5 to 20 percent.
    Type: Application
    Filed: July 29, 2005
    Publication date: February 1, 2007
    Inventors: Chia-Cheng Lin, Larry Shelestak
  • Publication number: 20060211563
    Abstract: A colorant for a high redox glass composition comprising: total iron (Fe2O3) 0 to 1.1 weight percent; and from 0.0001 to 0.15 weight percent of at least one of the following: Cu nanostructures, Au nanostructures, or Ag nanostructures, wherein the weight percents are based on the total weight of the glass composition. The colorant of the invention can be used to make glass compositions having various colors.
    Type: Application
    Filed: March 21, 2005
    Publication date: September 21, 2006
    Inventors: Mehran Arbab, Larry Shelestak, Songwei Lu
  • Publication number: 20060178255
    Abstract: The present invention provides a blue glass that can be essentially free of selenium and cobalt but still has a blue color and desired luminous transmittance. Additionally, the amount of iron present is comparable to conventional soda-lime-silica glass. The glass of the present invention can have a soda-lime-silica glass base portion, with major colorants that provide the blue color.
    Type: Application
    Filed: February 10, 2005
    Publication date: August 10, 2006
    Inventors: Larry Shelestak, James Baldauff
  • Publication number: 20050170944
    Abstract: A glass composition for forming a blue colored glass is disclosed. The glass composition is made up of a base glass portion, iron oxide, and at least one first additive compound selected from Nd2O3 in an amount up to 1 weight percent and/or CuO in an amount up to 0.5 weight percent. The base glass portion has the following components: SiO2 from 66 to 75 weight percent; Na2O from 10 to 20 weight percent; CaO from 5 to 15 weight percent; MgO from 0 to 5 weight percent; Al2O3 from 0 to 5 weight percent; B2O3 from 0 to 5 weight percent; and K2O from 0 to 5 weight percent. The total iron in the glass composition ranges from 0.3 to 1.2 weight percent, and the glass composition has a redox ratio ranging from 0.15 to 0.65.
    Type: Application
    Filed: January 29, 2004
    Publication date: August 4, 2005
    Inventors: Mehran Arbab, Robert Heithoff, Larry Shelestak, Dennis Smith
  • Publication number: 20050090377
    Abstract: A glass composition for chemical tempering includes oxides in wt % ranges of: SiO2 60 to 75; Al2O3 18 to 28; Li2O 3 to 9; Na2O 0 to 3; K2O 0 to 0.5; CaO 0 to 3; MgO 0 to 3; ZrO2 0 to 3; where MgO+CaO is 0 to 6 wt %; Al2O3+ZrO2 is 18 to 28 wt %, and Na2O+K2O is 0.05 to 3.00 wt %. The glass has a log 10 viscosity temperature in the temperature range of 1328° F. (720° C.) to 1499° F. (815° C.); a liquidus temperature in the temperature range of 2437° F. (1336° C.) to 2575° F. (1413° C.), and a log 7.6 softening point temperature in the temperature range of 1544° F. (840° C.) to 1724° F. (940° C.). The chemically tempered glass has, among other properties, an abraded modulus of rupture of 72 to 78 KPSI, and a modulus of rupture of 76 to 112 KPSI.
    Type: Application
    Filed: October 1, 2004
    Publication date: April 28, 2005
    Inventors: Larry Shelestak, George Goodwin, Amarendra Mishra, James Baldauff