Patents by Inventor Larry Vincent DODDS

Larry Vincent DODDS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11917573
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that are RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., psuedoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: February 27, 2024
    Assignee: Skyhook Wireless, Inc.
    Inventors: Simon Issakov, Larry Vincent Dodds, Robert Anderson
  • Patent number: 11895610
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that am RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., psuedoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: February 6, 2024
    Assignee: Skyhook Wireless, Inc.
    Inventors: Simon Issakov, Larry Vincent Dodds, Robert Anderson
  • Patent number: 11889451
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that are RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., pseudoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Grant
    Filed: June 1, 2022
    Date of Patent: January 30, 2024
    Assignee: Skyhook Wireless, Inc.
    Inventors: Simon Issakov, Larry Vincent Dodds, Robert Anderson
  • Publication number: 20220353839
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that am RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., psuedoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Application
    Filed: June 28, 2022
    Publication date: November 3, 2022
    Inventors: Simon ISSAKOV, Larry Vincent DODDS, Robert ANDERSON
  • Publication number: 20220303932
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that are RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., pseudoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Application
    Filed: June 1, 2022
    Publication date: September 22, 2022
    Inventors: Simon ISSAKOV, Larry Vincent DODDS, Robert ANDERSON
  • Publication number: 20220295438
    Abstract: In various embodiments, crowd sourcing techniques are provided to enable RTT-based positioning of UE. To address issues of discovering which beacons (e.g., Wi-Fi APs, cellular base stations, BLE transmitters, etc.) support measurement of RTT (e.g., according to IEEE 802.11mc, 3GPP Release 16, etc.), beacon RTT capabilities may be crowd-sourced from UE and maintained by a cloud-based location platform in a beacon database (or more specifically, a RTT database portion thereof). To address the issue of determining physical antenna positions, RTT measurements may be crowd-sourced from UE for those beacons that are RTT capable, and used by a trilateration algorithm (e.g., a WLS multilateration algorithm) to determine physical antenna positions, which also may be maintained in the beacon database. Accuracy of the trilateration may be enhanced by obtaining raw GNSS measurements (e.g., psuedoranges) from the UE, and performing a cloud-based RTK GNSS position fix for the UE.
    Type: Application
    Filed: June 1, 2022
    Publication date: September 15, 2022
    Inventors: Simon ISSAKOV, Larry Vincent DODDS, Robert ANDERSON