Patents by Inventor Lars Aldon Eriksson

Lars Aldon Eriksson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10996347
    Abstract: Example embodiments of a radiation detection system including a detector is described. The detector can include a scintillator, a sensor, and a light source. The radiation detection system can further include a controller programmed to control the light source to expose the scintillator to a light to saturate traps in the scintillator. In some embodiments, the detector can further include a second light source, and the controller is programmed to control the second light source to expose the scintillator to a second light to detrap afterglow traps in the scintillator.
    Type: Grant
    Filed: April 21, 2017
    Date of Patent: May 4, 2021
    Assignee: University of Tennessee Research Foundation
    Inventors: Charles L. Melcher, Mohit Tyagi, Merry Koschan, Peter Carl Cohen, Matthias Schmand, Mark S. Andreaco, Lars Aldon Eriksson
  • Publication number: 20170219719
    Abstract: A radiation detection system may include a detector. The detector may include a scintillator to convert ionizing radiation, which originates externally to the detector, into visible light, a sensor configured to detect the visible light from the scintillator, and a light source. The radiation detection system may further include a controller programmed to control the light source to expose the scintillator to a light to saturate traps in the scintillator.
    Type: Application
    Filed: April 21, 2017
    Publication date: August 3, 2017
    Inventors: Charles L. Melcher, Mohit Tyagi, Merry Koschan, Peter Carl Cohen, Matthias Schmand, Mark S. Andreaco, Lars Aldon Eriksson
  • Patent number: 9664799
    Abstract: A radiation detector may include a scintillator, a light source, and a sensor. The scintillator may include various scintillation materials capable of converting non-visible radiation (incoming radiation) into visible light. The sensor may be placed in adjacent or in close proximity to the scintillator, such that any converted visible light may be detected or measured by the sensor. The light source may be placed in adjacent or in close proximity to the scintillator, such that light from the light source may interact with defects in the scintillator to minimize interference on the conversion of non-visible radiation into visible light caused by the defects.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: May 30, 2017
    Assignees: University of Tennessee Research Foundation, Siemens Molecular Imaging
    Inventors: Charles L. Melcher, Mohit Tyagi, Merry Koschan, Peter Carl Cohen, Matthias Schmand, Mark S. Andreaco, Lars Aldon Eriksson
  • Publication number: 20160124094
    Abstract: A radiation detector may include a scintillator, a light source, and a sensor. The scintillator may include various scintillation materials capable of converting non-visible radiation (incoming radiation) into visible light. The sensor may be placed in adjacent or in close proximity to the scintillator, such that any converted visible light may be detected or measured by the sensor. The light source may be placed in adjacent or in close proximity to the scintillator, such that light from the light source may interact with defects in the scintillator to minimize interference on the conversion of non-visible radiation into visible light caused by the defects.
    Type: Application
    Filed: June 12, 2014
    Publication date: May 5, 2016
    Inventors: Charles L. Melcher, Mohit Tyagi, Merry Koschan, Peter Carl Cohen, Matthias Schmand, Mark S. Andreaco, Lars Aldon Eriksson