Patents by Inventor Lars EBEL

Lars EBEL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10991840
    Abstract: A stacked multi-junction solar cell having a first subcell and second subcell, the second subcell having a larger band gap than the first subcell. A third subcell has a larger band gap than the second subcell, and each of the subcells include an emitter and a base. The second subcell has a layer which includes a compound formed at least the elements GaInAsP, and a thickness of the layer is greater than 100 nm, and the layer is formed as part of the emitter and/or as part of the base and/or as part of the space-charge zone situated between the emitter and the base. The third subcell has a layer including a compound formed of at least the elements GaInP, and the thickness of the layer is greater than 100 nm.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: April 27, 2021
    Assignee: AZUR SPACE Solar Power GmbH
    Inventors: Lars Ebel, Wolfgang Guter, Matthias Meusel
  • Patent number: 10896986
    Abstract: Solar cell stack comprising III-V semiconductor layers, which includes a first subcell having a first band gap and a first lattice constant and which includes a second subcell having a second band gap and a second lattice constant, and which includes an intermediate layer sequence disposed between the two solar cells. The intermediate layer sequence including a first barrier layer and a first tunnel diode and a second barrier layer, and the layers being arranged in the specified order. The tunnel diode includes a degenerate n+ layer having a third lattice constant and a degenerate p+ layer having a fourth lattice constant, the fourth lattice constant being smaller than the third lattice constant, and the first band gap being smaller than the second band gap, and the p+ layer having a different material composition than the n+ layer.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: January 19, 2021
    Assignee: AZUR SPACE Solar Power GmbH
    Inventors: Lars Ebel, Wolfgang Guter
  • Patent number: 10833215
    Abstract: A multi-junction solar cell having a first subcell made of an InGaAs compound. The first subcell has a first lattice constant and A second subcell has a second lattice constant. The first lattice constant is at least 0.008 ? greater than the second lattice constant. A metamorphic buffer is formed between the first subcell and the second subcell and has a sequence of at least three layers and a lattice constant increases from layer to layer in the sequence in the direction toward the first subcell. The lattice constants of the layers of the buffer are greater than the second lattice constant, and a layer of the metamorphic buffer has a third lattice constant that is greater than the first lattice constant. A number N of compensation layers for compensating the residual stress of the metamorphic buffer is formed between the metamorphic buffer and the first subcell.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: November 10, 2020
    Assignee: Azur Space Solar Power GmbH
    Inventors: Wolfgang Guter, Matthias Meusel, Frank Dimroth, Lars Ebel, Rene Kellenbenz
  • Publication number: 20180374973
    Abstract: Solar cell stack comprising III-V semiconductor layers, which includes a first subcell having a first band gap and a first lattice constant and which includes a second subcell having a second band gap and a second lattice constant, and which includes an intermediate layer sequence disposed between the two solar cells. The intermediate layer sequence including a first barrier layer and a first tunnel diode and a second barrier layer, and the layers being arranged in the specified order. The tunnel diode includes a degenerate n+ layer having a third lattice constant and a degenerate p+ layer having a fourth lattice constant, the fourth lattice constant being smaller than the third lattice constant, and the first band gap being smaller than the second band gap, and the p+ layer having a different material composition than the n+ layer.
    Type: Application
    Filed: June 21, 2018
    Publication date: December 27, 2018
    Applicant: AZUR SPACE Solar Power GmbH
    Inventors: Lars EBEL, Wolfgang GUTER
  • Publication number: 20170170354
    Abstract: A stacked multi-junction solar cell having a first subcell and second subcell, the second subcell having a larger band gap than the first subcell. A third subcell has a larger band gap than the second subcell, and each of the subcells include an emitter and a base. The second subcell has a layer which includes a compound formed at least the elements GaInAsP, and a thickness of the layer is greater than 100 nm, and the layer is formed as part of the emitter and/or as part of the base and/or as part of the space-charge zone situated between the emitter and the base. The third subcell has a layer including a compound formed of at least the elements GaInP, and the thickness of the layer is greater than 100 nm.
    Type: Application
    Filed: December 12, 2016
    Publication date: June 15, 2017
    Applicant: AZUR SPACE Solar Power GmbH
    Inventors: Lars EBEL, Wolfgang GUTER, Matthias MEUSEL
  • Publication number: 20160380142
    Abstract: A multi-junction solar cell having a first subcell made of an InGaAs compound. The first subcell has a first lattice constant and A second subcell has a second lattice constant. The first lattice constant is at least 0.008 ? greater than the second lattice constant. A metamorphic buffer is formed between the first subcell and the second subcell and has a sequence of at least three layers and a lattice constant increases from layer to layer in the sequence in the direction toward the first subcell. The lattice constants of the layers of the buffer are greater than the second lattice constant, and a layer of the metamorphic buffer has a third lattice constant that is greater than the first lattice constant. A number N of compensation layers for compensating the residual stress of the metamorphic buffer is formed between the metamorphic buffer and the first subcell.
    Type: Application
    Filed: September 13, 2016
    Publication date: December 29, 2016
    Applicant: AZUR SPACE Solar Power GmbH
    Inventors: Wolfgang GUTER, Matthias MEUSEL, Frank DIMROTH, Lars EBEL, Rene KELLENBENZ
  • Patent number: 8974707
    Abstract: Planar or tubular sputtering targets made of a silver base alloy and at least one further alloy component selected from indium, tin, antimony, and bismuth accounting jointly for a weight fraction of 0.01 to 5.0% by weight are known. However, moving on to ever larger targets, spark discharges are evident and often lead to losses especially in the production of large and high-resolution displays having comparatively small pixels. For producing a sputtering target with a large surface area on the basis of a silver alloy of this type, which has a surface area of more than 0.3 m2 as a planar sputtering target and has a length of at least 1.0 m as a tubular sputtering target, and in which the danger of spark discharges is reduced and thus a sputtering process with comparatively high power density is made feasible, the invention proposes that the silver base alloy has a crystalline structure with a mean grain size of less than 120 ?m, an oxygen content of less than 50 wt.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: March 10, 2015
    Assignee: Heraeus Deutschland GmbH & Co. KG
    Inventors: Martin Schlott, Sabine Schneider-Betz, Uwe Konietzka, Markus Schultheis, Ben Kahle, Lars Ebel
  • Publication number: 20130264200
    Abstract: Planar or tubular sputtering targets made of a silver base alloy and at least one further alloy component selected from indium, tin, antimony, and bismuth accounting jointly for a weight fraction of 0.01 to 5.0% by weight are known. However, moving on to ever larger targets, spark discharges are evident and often lead to losses especially in the production of large and high-resolution displays having comparatively small pixels. For producing a sputtering target with a large surface area on the basis of a silver alloy of this type, which has a surface area of more than 0.3 m2 as a planar sputtering target and has a length of at least 1.0 m as a tubular sputtering target, and in which the danger of spark discharges is reduced and thus a sputtering process with comparatively high power density is made feasible, the invention proposes that the silver base alloy has a crystalline structure with a mean grain size of less than 120 ?m, an oxygen content of less than 50 wt.
    Type: Application
    Filed: March 18, 2013
    Publication date: October 10, 2013
    Applicant: Heraeus Materials Technology GmbH & Co. KG
    Inventors: Martin SCHLOTT, Sabine SCHNEIDER-BETZ, Uwe KONIETZKA, Markus SCHULTHEIS, Ben KAHLE, Lars EBEL