Patents by Inventor Lars Fuglsang

Lars Fuglsang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11858227
    Abstract: A method of manufacturing a wind turbine blade shell part is described. Fibre mats and a root end insert are laid up in a mould part in a layup procedure by use of an automated layup system. The fibre mats are laid up by use of a buffer so that the fibre mats may continuously be laid up on the mould surface, also during a cutting procedure. The root end insert is prepared in advance and mounted on a mounting plate. The root end insert is lowered onto the mould by use of the mounting plate and a lowering mechanism. After the wind turbine blade shell has been moulded, the mounting plate is removed.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: January 2, 2024
    Assignee: LM WP PATENT HOLDING A/S
    Inventors: Dennis Andre Borsting, Ivan Engmark Mortensen, Lars Fuglsang, Per Kjaer Christiansen
  • Publication number: 20220118726
    Abstract: A method of manufacturing a wind turbine blade shell part is described. Fibre mats and a root end insert are laid up in a mould part in a layup procedure by use of an automated layup system. The fibre mats are laid up by use of a buffer so that the fibre mats may continuously be laid up on the mould surface, also during a cutting procedure. The root end insert is prepared in advance and mounted on a mounting plate. The root end insert is lowered onto the mould by use of the mounting plate and a lowering mechanism. After the wind turbine blade shell has been moulded, the mounting plate is removed.
    Type: Application
    Filed: December 28, 2021
    Publication date: April 21, 2022
    Inventors: Dennis Andre BORSTING, Ivan Engmark MORTENSEN, Lars FUGLSANG, Per Kjaer CHRISTIANSEN
  • Patent number: 11260610
    Abstract: A method of manufacturing a wind turbine blade shell part is described. Fibre mats and a root end insert are laid up in a mould part in a layup procedure by use of an automated layup system. The fibre mats are laid up by use of a buffer so that the fibre mats may continuously be laid up on the mould surface, also during a cutting procedure. The root end insert is prepared in advance and mounted on a mounting plate. The root end insert is lowered onto the mould by use of the mounting plate and a lowering mechanism. After the wind turbine blade shell has been moulded, the mounting plate is removed.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: March 1, 2022
    Assignee: LM WP PATENT HOLDING A/S
    Inventors: Dennis Andre Borsting, Ivan Engmark Mortensen, Lars Fuglsang, Per Kjaer Christiansen
  • Patent number: 11241847
    Abstract: A method of manufacturing a wind turbine blade shell part is described. Fibre mats and a root end insert are laid up in a mould part in a layup procedure by use of an automated layup system. The fibre mats are laid up by use of a buffer so that the fibre mats may continuously be laid up on the mould surface, also during a cutting procedure. The root end insert is prepared in advance and mounted on a mounting plate. The root end insert is lowered onto the mould by use of the mounting plate and a lowering mechanism. After the wind turbine blade shell has been moulded, the mounting plate is removed.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: February 8, 2022
    Assignee: LM WP PATENT HOLDING A/S
    Inventors: Dennis Andre Borsting, Ivan Engmark Mortensen, Lars Fuglsang, Per Kjaer Christiansen
  • Patent number: 11220079
    Abstract: The present invention relates to a method of manufacturing a plurality of wind turbine blades. The method includes providing first, second and third stationary moulds, moulding respective first upper and lower shell halves, removing and turning the first upper shell half, and positioning and bonding it on the first lower shell half to form a closed wind turbine blade shell. This is repeated for continuously manufacturing a plurality of wind turbine blades.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: January 11, 2022
    Assignee: LM WIND POWER US TECHNOLOGY APS
    Inventors: Lars Fuglsang, Torben Krogsdal Jacobsen
  • Publication number: 20190389165
    Abstract: The present invention relates to a method of manufacturing a plurality of wind turbine blades. The method comprises first, second and third stationary moulds (64a, 64b, 64c), moulding respective first upper and lower shell halves (74a, 76a), removing and turning the first upper shell half (74a), and positioning and bonding it on the first lower shell half (76a) to form a closed wind turbine blade shell. This is repeated for continuously manufacturing a plurality of wind turbine blades.
    Type: Application
    Filed: December 1, 2017
    Publication date: December 26, 2019
    Inventors: Lars FUGLSANG, Torben Krogsdal JACOBSEN
  • Patent number: 10378508
    Abstract: A bulkhead assembly for a wind turbine blade is described, where the bulkhead is substantially formed from a flexible sheet material. In one aspect, the flexible sheet material can be attached to the larger assembly using a releasable connection, e.g. a zipped connection, to allow for relatively easy installation and removal, e.g. for repair or other service operations. At least a portion of the sheet material may be transparent, to allow for easy inspection of the interior of the wind turbine blade. In one aspect, the bulkhead assembly is arranged to couple to, or is formed integrally with, the root flange of a wind turbine blade. The use of such a flexible material to form the blade root end bulkhead allows for ease of handling and manufacturability over prior art systems.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: August 13, 2019
    Assignee: LM WP PATENT HOLDING A/S
    Inventors: Michael Schäfer, Lars Fuglsang Andersen
  • Patent number: 10330082
    Abstract: A system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication device located towards the tip end of the blade. The root end device is provided on a bracket projecting from the external surface of the blade, to provide a communication path between the root end and tip end devices which is less susceptible to interference from multipath effects, etc. There is further provided a method to derive tilt and yaw moments from measured deflections. A control method for such a system is also described, wherein the signal gain of the communication path may be varied based at least in part upon the deflection characteristics of the wind turbine blade.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: June 25, 2019
    Assignee: LM WP PATENT HOLDING A/S
    Inventors: Claus Byskov, Peter Baek, Michael Klitgaard, Casper Skovby, Lars Fuglsang
  • Publication number: 20190022959
    Abstract: A method of manufacturing a wind turbine blade shell part is described. Fibre mats and a root end insert are laid up in a mould part in a layup procedure by use of an automated layup system. The fibre mats are laid up by use of a buffer so that the fibre mats may continuously be laid up on the mould surface, also during a cutting procedure. The root end insert is prepared in advance and mounted on a mounting plate. The root end insert is lowered onto the mould by use of the mounting plate and a lowering mechanism. After the wind turbine blade shell has been moulded, the mounting plate is removed.
    Type: Application
    Filed: September 27, 2018
    Publication date: January 24, 2019
    Inventors: Dennis Andre BORSTING, Ivan Engmark MORTENSEN, Lars FUGLSANG, Per Kjaer CHRISTIANSEN
  • Publication number: 20190022960
    Abstract: A method of manufacturing a wind turbine blade shell part is described. Fibre mats and a root end insert are laid up in a mould part in a layup procedure by use of an automated layup system. The fibre mats are laid up by use of a buffer so that the fibre mats may continuously be laid up on the mould surface, also during a cutting procedure. The root end insert is prepared in advance and mounted on a mounting plate. The root end insert is lowered onto the mould by use of the mounting plate and a lowering mechanism. After the wind turbine blade shell has been moulded, the mounting plate is removed.
    Type: Application
    Filed: September 27, 2018
    Publication date: January 24, 2019
    Inventors: Dennis Andre BORSTING, Ivan Engmark MORTENSEN, Lars FUGLSANG, Per Kjaer CHRISTIANSEN
  • Patent number: 10118352
    Abstract: A method of manufacturing a wind turbine blade shell part is described. Fiber mats and a root end insert are laid up in a mould part in a layup procedure by use of an automated layup system. The fiber mats are laid up by use of a buffer so that the fiber mats may continuously be laid up on the mould surface, also during a cutting procedure. The root end insert is prepared in advance and mounted on a mounting plate. The root end insert is lowered onto the mould by use of the mounting plate and a lowering mechanism. After the wind turbine blade shell has been moulded, the mounting plate is removed.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: November 6, 2018
    Assignee: LM WP Patent Holdings A/S
    Inventors: Dennis Andre Borsting, Ivan Engmark Mortensen, Lars Fuglsang, Per Kjaer Christiansen
  • Publication number: 20160176127
    Abstract: A method of manufacturing a wind turbine blade shell part is described. Fibre mats and a root end insert are laid up in a mould part in a layup procedure by use of an automated layup system. The fibre mats are laid up by use of a buffer so that the fibre mats may continuously be laid up on the mould surface, also during a cutting procedure. The root end insert is prepared in advance and mounted on a mounting plate. The root end insert is lowered onto the mould by use of the mounting plate and a lowering mechanism. After the wind turbine blade shell has been moulded, the mounting plate is removed.
    Type: Application
    Filed: May 31, 2013
    Publication date: June 23, 2016
    Inventors: Dennis Andre BORSTING, Ivan Engmark MORTENSEN, Lars FUGLSANG, Per Kjaer CHRISTIANSEN
  • Patent number: 9341160
    Abstract: A wind turbine includes a number of blades and an optical measurement system comprising a light source, such as a laser, an optical transmitter part, an optical receiver part, and a signal processor. The light source is optically coupled to the optical transmitter part, which includes an emission point for emitting light in a probing direction. The optical receiver part comprises a receiving point and a detector. The optical receiver part is adapted for receiving a reflected part of light from a probing region along the probing direction and directing the reflected part of light to the detector to generate a signal used to determine a first velocity component of the inflow. The emission point is located in a first blade at a first radial distance from a center axis, and the receiving point is located in the first blade at a second radial distance from the center axis.
    Type: Grant
    Filed: November 7, 2014
    Date of Patent: May 17, 2016
    Assignee: LM GLASFIBER A/S
    Inventors: Peter Fuglsang, Lars Fuglsang, Lars Christian Hvidegaard Hammer
  • Publication number: 20150240787
    Abstract: A system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication device located towards the tip end of the blade. The root end device is provided on a bracket projecting from the external surface of the blade, to provide a communication path between the root end and tip end devices which is less susceptible to interference from multipath effects, etc. There is further provided a method to derive tilt and yaw moments from measured deflections. A control method for such a system is also described, wherein the signal gain of the communication path may be varied based at least in part upon the deflection characteristics of the wind turbine blade.
    Type: Application
    Filed: August 14, 2013
    Publication date: August 27, 2015
    Inventors: Claus Byskov, Peter Baek, Michael Klitgaard, Casper Skovby, Lars Fuglsang
  • Patent number: 9057359
    Abstract: A blade, for a rotor of a wind turbine has a profiled contour in a radial direction is divided into a root region with a substantially circular or elliptical profile closest to the hub and an airfoil region with a lift generating profile furthest away from the hub. A transition region between the root region and the airfoil region has a profile gradually changing in the radial direction from the circular or elliptical profile of the root region to the lift generating profile of the airfoil region, and the airfoil region comprises at least a first longitudinal segment extending at least 20% of a longitudinal extent of the airfoil region. The first longitudinal segment has a first base part with a cross-sectional profile such that, when impacted by an incident airflow at an angle of attack of 0 degrees has a lift coefficient, which is 0 or less.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: June 16, 2015
    Assignee: LM GLASFIBER A/S
    Inventors: Peter Fuglsang, Stefano Bove, Lars Fuglsang
  • Patent number: 9033659
    Abstract: A blade for a rotor of a wind turbine is manufactured with a root region with a substantially circular or elliptical profile closest to the hub, an airfoil region with a lift generating profile furthest away from the hub and a transition region having a profile gradually changing the root region to the airfoil region. A first blade design is used for the first base part on a first longitudinal section of an airfoil region of a second blade, so that an induction factor of the first base part on the second blade deviates from a target induction factor. The first longitudinal section of the second blade is provided with flow altering devices so as to adjust the aerodynamic properties of the first longitudinal segment to substantially meet the target induction factor at the design point on the second blade.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: May 19, 2015
    Assignee: LM Glasfiber A/S
    Inventors: Peter Fuglsang, Stefano Bove, Lars Fuglsang
  • Patent number: 9017034
    Abstract: An upwind wind turbine comprising blades extending radially from a rigid hub on a main shaft having a horizontal axis is described. The blades and hub constitute a rotor with a rotor plane. The main shaft is pivotally mounted in a nacelle on top of a tower which pivots around the vertical axis of the tower. The rotor plane adjusts in relation to wind direction, so during normal use the rotor is positioned on the upwind side of the tower. Each blade has at least a first leeward supporting mechanism having first and second ends. The first end connects to the blade at a first leeward mounting point positioned in a radial distance from the horizontal axis. The second end connects to a second leeward mounting point at a rotatable part and is positioned in an axial distance from the rotor plane on the leeward side of the rotor.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: April 28, 2015
    Assignee: LM Glasfiber A/S
    Inventor: Lars Fuglsang
  • Publication number: 20150064005
    Abstract: A wind turbine includes a number of blades and an optical measurement system comprising a light source, such as a laser, an optical transmitter part, an optical receiver part, and a signal processor. The light source is optically coupled to the optical transmitter part, which includes an emission point for emitting light in a probing direction. The optical receiver part comprises a receiving point and a detector. The optical receiver part is adapted for receiving a reflected part of light from a probing region along the probing direction and directing the reflected part of light to the detector to generate a signal used to determine a first velocity component of the inflow. The emission point is located in a first blade at a first radial distance from a center axis, and the receiving point is located in the first blade at a second radial distance from the center axis.
    Type: Application
    Filed: November 7, 2014
    Publication date: March 5, 2015
    Inventors: Peter FUGLSANG, Lars FUGLSANG, Lars Christian Hvidegaard HAMMER
  • Patent number: 8917383
    Abstract: A wind turbine includes a number of blades and an optical measurement system comprising a light source, such as a laser, an optical transmitter part, an optical receiver part, and a signal processor. The light source is optically coupled to the optical transmitter part, which includes an emission point for emitting light in a probing direction. The optical receiver part comprises a receiving point and a detector. The optical receiver part is adapted for receiving a reflected part of light from a probing region along the probing direction and directing the reflected part of light to the detector to generate a signal used to determine a first velocity component of the inflow. The emission point is located in a first blade at a first radial distance from a center axis, and the receiving point is located in the first blade at a second radial distance from the center axis.
    Type: Grant
    Filed: November 26, 2010
    Date of Patent: December 23, 2014
    Assignee: LM Glasfiber A/S
    Inventors: Peter Fuglsang, Lars Fuglsang, Lars Christian Hvidegaard Hammer
  • Patent number: 8899922
    Abstract: A blade for a rotor of a wind turbine is divided into a root region closest to the hub and an airfoil region with a lift generating profile furthest away from the hub. A transition region has a profile gradually changing in the radial direction from the circular or elliptical profile of the root region to the lift generating profile of the airfoil region, and includes at least a first longitudinal segment extending along at least 20% of a longitudinal extent of the airfoil region. A base part has an inherent non-ideal twist, such as no twist, or a reduced twist compared to a target blade twist, so that an axial induction factor of the first base part at a design point deviates from a target axial induction factor. A number of flow altering devices are arranged so as to adjust the aerodynamic properties of the first longitudinal segment.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: December 2, 2014
    Assignee: LM Glasfiber A/S
    Inventors: Peter Fuglsang, Stefano Bove, Lars Fuglsang