Patents by Inventor Lars Gruner-Nielsen

Lars Gruner-Nielsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9964420
    Abstract: A distributed Brillouin sensor system comprising a pump laser, and a combined fiber assembly including at least a first optical fiber section and a second optical fiber section is described. The pump laser is arranged so as to send a pump signal into a first end of combined fiber assembly, and the detector system is arranged to detect Brillouin backscattering from the combined fiber assembly. The combined fiber assembly is characterized by the first section having a low Brillouin gain, and the second fiber section having a high Brillouin gain.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: May 8, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Lars Gruner-Nielsen, Poul Kristensen, Tommy Geisler
  • Patent number: 9874519
    Abstract: A distributed Brillouin sensor system comprising a pump laser, a Brillouin sensor fiber, and a detector system is described. The pump laser is arranged so as to send a pump signal into a first end of the Brillouin sensor fiber, and the detector system is arranged to detect Brillouin backscattering from the Brillouin sensor fiber. The Brillouin sensor fiber is characterized by having a negative dispersion, and further by an effective area of the sensor fiber being less than or equal to 50 ?m2.
    Type: Grant
    Filed: October 30, 2015
    Date of Patent: January 23, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Lars Gruner-Nielsen, Poul Kristensen, Tommy Geisler
  • Patent number: 9709731
    Abstract: A few-mode fiber is described, having a graded-index core and a surrounding cladding comprising a ledge between the core and the trench, a down-doped trench abutting the ledge, and an undoped cladding region abutting the trench. The fiber's refractive index profile is configured to support 9 or more LP modes for transmission of a spatially-multiplexed optical signal. Undesired modes have respective effective indices that are close to, or less than, the cladding index so as to result in leakage of the undesired modes into the outer cladding. The index spacing between the desired mode having the lowest effective index and the leaky mode with the highest effective index is sufficiently large so as to substantially prevent coupling therebetween.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: July 18, 2017
    Assignee: OFS FITEL, LLC
    Inventors: Lars Gruner-Nielsen, Robert L. Lingle, David W. Peckham, Yi Sun
  • Publication number: 20170153178
    Abstract: A distributed Brillouin sensor system comprising a pump laser, a Brillouin sensor fiber, and a detector system is described. The pump laser is arranged so as to send a pump signal into a first end of the Brillouin sensor fiber, and the detector system is arranged to detect Brillouin backscattering from the Brillouin sensor fiber. The Brillouin sensor fiber is characterized by having a negative dispersion, and further by an effective area of the sensor fiber being less than or equal to 50 ?m2.
    Type: Application
    Filed: October 30, 2015
    Publication date: June 1, 2017
    Inventors: Lars Gruner-Nielsen, Poul Kristensen, Tommy Geisler
  • Patent number: 9502852
    Abstract: Embodiments of the present invention generally relate to fiber designs for wavelength tunable ultra-short pulse lasers. More specifically, embodiments of the present invention relate to systems incorporating fiber designs for higher order mode fibers capable of soliton self frequency shifting where a system comprises a first fiber for shifting the wavelength from a pump wavelength to a transfer wavelength and a second fiber for shifting the pulse from the transfer wavelength to an output wavelength. In one embodiment of the present invention, a wavelength tunable short pulse fiber laser system comprises: a pulse generator for providing a pulse having an input wavelength; a mode-converter; a first designed fiber for shifting the pulse from the input wavelength to a transfer wavelength; and a second designed fiber for shifting the pulse from the transfer wavelength to an output wavelength.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: November 22, 2016
    Assignee: OFS FITEL, LLC
    Inventors: Lars Gruner-Nielsen, Dan P Jakobsen, Martin E. V. Pedersen, Chris Xu, Ji Cheng
  • Patent number: 9482817
    Abstract: Embodiments of the present invention generally relate to optical mode conversion by nonlinear effects. More specifically, embodiments of the present invention relate to nonlinear mode conversion utilizing intermodal four-wave mixing to convert light between modes having different wavelengths for complex applications. In one embodiment of the present invention, a fiber comprises an input end for receiving light in a first mode at a first wavelength, and an output end for outputting light in a desired second mode at a desired second wavelength, wherein the first wavelength and the second wavelength are not the same. In many embodiments, the fiber comprises a higher-order mode fiber.
    Type: Grant
    Filed: December 6, 2012
    Date of Patent: November 1, 2016
    Assignee: OFS FITEL, LLC
    Inventors: Lars Gruner-Nielsen, Dan P Jakobsen, Martin E. V. Pedersen, Chris Xu, Ji Cheng
  • Publication number: 20160258788
    Abstract: A distributed Brillouin sensor system comprising a pump laser, and a combined fiber assembly including at least a first optical fiber section and a second optical fiber section is described. The pump laser is arranged so as to send a pump signal into a first end of combined fiber assembly, and the detector system is arranged to detect Brillouin backscattering from the combined fiber assembly. The combined fiber assembly is characterized by the first section having a low Brillouin gain, and the second fiber section having a high Brillouin gain.
    Type: Application
    Filed: October 30, 2015
    Publication date: September 8, 2016
    Inventors: Lars Gruner-Nielsen, Poul Kristensen, Tommy Geisler
  • Patent number: 9366811
    Abstract: A highly nonlinear optical fiber having an improved stimulated Brillouin scattering threshold is provided. The fiber includes a central core region made substantially from silica doped with aluminum, a trench region surrounding the central core region, and a silica cladding surrounding the trench region. The refractive index profile of the fiber is optimized. A refractive index difference of the central core region relative to the cladding (?n+) is less than 26×10?3, and more preferably at or near 21×10?3. A refractive index difference of the trench region relative to the cladding (?n?) is less than ?5×10?3. The trench region is preferably doped with fluorine. The aluminum doping level of the central core region is preferably less than 14 wt % Al. A fiber doped with aluminum having this refractive index profile exhibits a significantly higher figure of merit (Pth?Leff) than conventional germanium-doped fibers.
    Type: Grant
    Filed: March 4, 2013
    Date of Patent: June 14, 2016
    Assignee: OFS FITEL, LLC
    Inventors: Lars Gruner-Nielsen, Soren Herstrom, Dan Peter Jakobsen, Bera Palsdottir
  • Patent number: 9360628
    Abstract: Embodiments of the present invention are generally related to embodiments of the present invention relate to a fiber stretchers module for use in the 1550 nm wavelength range. In one embodiment of the present invention, a fiber stretcher module for use in the 1550 nm wavelength range comprises a fiber having a relative dispersion slope, RDS, and a relative dispersion curvature, RDC, wherein a ratio of said slope to said curvature is between about 30 nm and about 0 nm, having a dispersion value of less than about ?10 ps/(nm·km) at about 1550 nm, and a RDS is equal to or greater than 0.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: June 7, 2016
    Assignee: OFS FITEL, LLC
    Inventor: Lars Gruner-Nielsen
  • Patent number: 9250383
    Abstract: A few-mode optical fiber comprises a core surrounded by a cladding, having a step index profile that is structured to support propagation of a plurality of desired signal-carrying modes, while suppressing undesired modes. The core and cladding are configured such that the undesired modes have respective effective indices that are close to, or less than, the cladding index such that the undesired modes are leaky modes. The index spacing between the desired mode having the lowest effective index and the leaky mode with the highest effective index is sufficiently large so as to substantially prevent coupling therebetween.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: February 2, 2016
    Assignee: OFS FITEL, LLC
    Inventors: Lars Gruner-Nielsen, Robert L. Lingle, Alan McCurdy, David W. Peckham, Torger Tokle
  • Publication number: 20150369985
    Abstract: An optical waveguide comprising an axial direction and a cross-section perpendicular to said axial direction is shown. The optical waveguide comprises a core region. The core region includes an integrally formed hologram, which extends along a first axial segment of the optical waveguide, the first axial segment having a first axial length. The hologram, seen in the cross-section, includes a micro-structure with written elements having a modified refractive index different from areas of the core region with an unmodified refractive index.
    Type: Application
    Filed: January 27, 2014
    Publication date: December 24, 2015
    Applicant: AARHUS UNIVERSITY
    Inventors: Lars Gruner-Nielsen, Peter Balling, Juha-Matti Savolainen, Poul Kristensen
  • Patent number: 9176275
    Abstract: A dispersion-compensating system and a dispersion-compensating fiber have an improved figure of merit and effective area. The dispersion-compensating system comprises a bulk dispersion-compensating module for providing optical-domain bulk dispersion compensation for an optical signal transmission. Additionally, the system may further comprise residual dispersion compensation, which can be performed in the electrical domain following coherent detection of both amplitude and phase of an optical signal. The dispersion-compensating fiber comprises an up-doped core region; a down-doped trench; an up-doped ring; and an outer cladding, and is configured to have a high figure of merit (FOM).
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: November 3, 2015
    Assignee: OFS FITEL, LLC
    Inventors: Lars Gruner-Nielsen, Dan P Jakobsen, Kim G Jespersen
  • Patent number: 9110351
    Abstract: Embodiments of the present invention relate to a fiber design that achieves high nonlinearity, an effective index providing phase matching for an illustrative wavelength conversion process, and a low sensitivity to perturbations in fiber scaling. In one embodiment, a fiber comprises an inner core having an inner core radius and an inner core index, an outer core having an outer core radius and an outer core index, the outer core index being lower than the inner core index, an inner cladding, having an inner cladding radius and an inner cladding index, the inner cladding index being less than the outer core index, and an effective index of the fiber, the effective index being greater than the inner cladding index and less than the outer core index, wherein the fiber has a low perturbation sensitivity factor of dispersion to scaling less than about 20 ps/nm/km along the length of the fiber.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: August 18, 2015
    Assignee: OFS FITEL, LLC
    Inventors: John M Fini, Lars Gruner-Nielsen, Dan P Jakobsen
  • Publication number: 20150177462
    Abstract: Embodiments of the present invention are generally related to embodiments of the present invention relate to a fiber stretchers module for use in the 1550 nm wavelength range. In one embodiment of the present invention, a fiber stretcher module for use in the 1550 nm wavelength range comprises a fiber having a relative dispersion slope, RDS, and a relative dispersion curvature, RDC, wherein a ratio of said slope to said curvature is between about 30 nm and about 0 nm, having a dispersion value of less than about ?10 ps/(nm·km) at about 1550 nm, and a RDS is equal to or greater than 0.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 25, 2015
    Inventor: Lars Gruner-Nielsen
  • Publication number: 20150168643
    Abstract: A few-mode fiber is described, having a graded-index core and a surrounding cladding comprising a ledge between the core and the trench, a down-doped trench abutting the ledge, and an undoped cladding region abutting the trench. The fiber's refractive index profile is configured to support 9 or more LP modes for transmission of a spatially-multiplexed optical signal. Undesired modes have respective effective indices that are close to, or less than, the cladding index so as to result in leakage of the undesired modes into the outer cladding. The index spacing between the desired mode having the lowest effective index and the leaky mode with the highest effective index is sufficiently large so as to substantially prevent coupling therebetween.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 18, 2015
    Inventors: Lars Gruner-Nielsen, Robert L. Lingle, David W. Peckham, Yi Sun
  • Patent number: 8995050
    Abstract: Embodiments of the present invention are generally related to embodiments of the present invention relate to a fiber stretchers module for use in the 1550 nm wavelength range. In one embodiment of the present invention, a fiber stretcher module for use in the 1550 nm wavelength range comprises a first fiber comprising a relative dispersion curve value of greater than about 0.0002 nm?2 and a dispersion value of less than about ?60 ps/(nm·km) at about 1550 nm, and a second fiber comprising a relative dispersion curve value of about zero and a relative dispersion slope value of about 0.003 nm?1 at about 1550 nm, wherein the fiber stretcher module comprises a collective relative dispersion slope of about 0.0413 nm?1 and a relative dispersion curve of about 0.00286 nm?2 at 1550 nm.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: March 31, 2015
    Assignee: OFS Fitel, LLC
    Inventor: Lars Gruner-Nielsen
  • Patent number: 8948559
    Abstract: The specification describes modified step index and GRaded INdex (GRIN) fibers with low core relative delta (near 0.8%) which have desirable properties for transmission. These lower delta fibers have lower attenuation losses due to reduced Rayleigh scattering, which is desirable to improve performance in multiple mode multiplexing. The fiber designs include optimized raised triangle profiles, and depressed cladding profiles, to support two and four LP modes.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: February 3, 2015
    Assignee: OFS Fitel, LLC
    Inventors: Lars Gruner-Nielsen, Robert L. Lingle, David W Peckham, Yi Sun
  • Publication number: 20150016792
    Abstract: A highly nonlinear optical fiber having an improved stimulated Brillouin scattering threshold is provided. The fiber includes a central core region made substantially from silica doped with aluminum, a trench region surrounding the central core region, and a silica cladding surrounding the trench region. The refractive index profile of the fiber is optimized. A refractive index difference of the central core region relative to the cladding (?n+) is less than 26×10?3, and more preferably at or near 21×10?3. A refractive index difference of the trench region relative to the cladding (?n?) is less than ?5×10?3. The trench region is preferably doped with fluorine. The aluminum doping level of the central core region is preferably less than 14 wt % Al. A fiber doped with aluminum having this refractive index profile exhibits a significantly higher figure of merit (Pth?Leff) than conventional germanium-doped fibers.
    Type: Application
    Filed: March 4, 2013
    Publication date: January 15, 2015
    Applicant: OFS Fitel, LLC
    Inventors: Lars Gruner-Nielsen, Soren Herstrom, Dan Peter Jakobsen, Bera Palsdottir
  • Publication number: 20150009554
    Abstract: Embodiments of the present invention generally relate to optical mode conversion using intermodal Cherenkov radiation. More specifically, embodiments of the present invention relate to optical mode conversion utilizing intermodal four-wave mixing to convert light between modes for complex applications, whereby one of the four waves is generated from Cherenkov radiation. In one embodiment of the present invention, a fiber comprises an input end for receiving light in a first mode at a first wavelength, and an output end for outputting light in a desired second mode at a desired second wavelength; wherein the desired second mode is controlled deforming the fiber, such as by bending, during an intermodal Cherenkov radiation process.
    Type: Application
    Filed: February 21, 2013
    Publication date: January 8, 2015
    Inventors: Lars Gruner-Nielsen, Martin Erland Vestergaard Pedersen, Chris Xu, Ji Cheng
  • Publication number: 20140334766
    Abstract: Embodiments of the present invention generally relate to optical mode conversion by nonlinear effects. More specifically, embodiments of the present invention relate to nonlinear mode conversion utilizing intermodal four-wave mixing to convert light between modes having different wavelengths for complex applications. In one embodiment of the present invention, a fiber comprises an input end for receiving light in a first mode at a first wavelength, and an output end for outputting light in a desired second mode at a desired second wavelength, wherein the first wavelength and the second wavelength are not the same. In many embodiments, the fiber comprises a higher-order mode fiber.
    Type: Application
    Filed: December 6, 2012
    Publication date: November 13, 2014
    Inventors: Lars Gruner-Nielsen, Dan P Jakobsen, Martin E.V. Pedersen, Chris Xu, Ji Cheng