Patents by Inventor Lars Gustaf Jansson

Lars Gustaf Jansson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6323736
    Abstract: A method and apparatus for digitally controlling the capacitance of an integrated circuit device using MOS-FET devices. In accordance with one aspect of the present invention, a one-bit or “binary” varactor is presented wherein the gate-to-bulk capacitance of the MOS-FET device exhibits dependency to a D.C. voltage applied between its gate and well implant regions. The capacitance-voltage characteristic of the binary capacitor has three major regions: (1) a first relatively flat region having little or no voltage dependency and having a capacitance equal to a first low capacitance of C1; (2) a sloped region wherein a voltage dependency exists; and (3) a second relatively flat region where there is little or no voltage dependency and where the capacitance equals a second higher capacitance of C2. The capacitance of the binary capacitor can be changed from C1 to C2 simply by changing the polarity of the applied D.C. voltage from a positive to a negative value.
    Type: Grant
    Filed: April 2, 2001
    Date of Patent: November 27, 2001
    Assignee: Silicon Wave, Inc.
    Inventor: Lars Gustaf Jansson
  • Publication number: 20010020875
    Abstract: A method and apparatus for digitally controlling the capacitance of an integrated circuit device using MOS-FET devices. In accordance with one aspect of the present invention, a one-bit or “binary” varactor is presented wherein the gate-to-bulk capacitance of the MOS-FET device exhibits dependency to a D.C. voltage applied between its gate and well implant regions. The capacitance-voltage characteristic of the binary capacitor has three major regions: (1) a first relatively flat region having little or no voltage dependency and having a capacitance equal to a first low capacitance of C1; (2) a sloped region wherein a voltage dependency exists; and (3) a second relatively flat region where there is little or no voltage dependency and where the capacitance equals a second higher capacitance of C2. The capacitance of the binary capacitor can be changed from C1 to C2 simply by changing the polarity of the applied D.C. voltage from a positive to a negative value.
    Type: Application
    Filed: April 2, 2001
    Publication date: September 13, 2001
    Applicant: Silicon Wave, Inc.
    Inventor: Lars Gustaf Jansson
  • Patent number: 6278338
    Abstract: A crystal oscillator apparatus is described that has a wide dynamic frequency range and that is capable of supporting a broad range of crystal types. The present invention reduces the unwanted side effects that are associated with the prior art crystal oscillator designs, such as the clipping of signals, the introduction of signal distortion and unwanted signal harmonics. The present invention reduces the total wasted loop gain of the oscillator while also reducing the amount of integrated circuit real estate required to implement the crystal oscillator. The crystal oscillator apparatus of the present invention preferably comprises a crystal resonator circuit, an inverting amplifier, a bias circuit, a reference circuit, and a peak detector circuit. The present invention takes advantage of Automatic Gain Control (AGC) design techniques. The gain of the present crystal oscillator is automatically regulated using a closed loop circuit design.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: August 21, 2001
    Assignee: Silicon Wave Inc.
    Inventor: Lars Gustaf Jansson
  • Patent number: 6268778
    Abstract: A method and apparatus for fully integrating a Voltage Controlled Oscillator (VCO) on an integrated circuit. The VCO is implemented using a differential-mode circuit design. The differential-mode implementation of the VCO preferably comprises a differential mode LC-resonator circuit, a digital capacitor, a differential pair amplifier, and a current source. The LC-resonator circuit includes at least one tuning varactor and two high Q inductors. The tuning varactor preferably has a wide tuning capacitance range. The tuning varactor is only used to “fine-tune” the center output frequency f0 of the VCO. The center output frequency f0 is coarsely tuned by the digital capacitor. The VCO high Q inductors comprise high gain, high self-resonance, and low loss IC inductors. The IC VCO is fabricated on a high resistivity substrate material using a trench isolated guard ring.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: July 31, 2001
    Assignee: Silicon Wave, Inc.
    Inventors: Lars Henrik Mucke, Christopher Dennis Hull, Lars Gustaf Jansson
  • Patent number: 6211745
    Abstract: A method and apparatus for digitally controlling the capacitance of an integrated circuit device using MOS-FET devices. In accordance with one aspect of the present invention, a one-bit or “binary” varactor is presented wherein the gate-to-bulk capacitance of the MOS-FET device exhibits dependency to a D.C. voltage applied between its gate and well implant regions. The capacitance-voltage characteristic of the binary capacitor has three major regions: (1) a first relatively flat region having little or no voltage dependency and having a capacitance equal to a first low capacitance of C1; (2) a sloped region wherein a voltage dependency exists; and (3) a second relatively flat region where there is little or no voltage dependency and where the capacitance equals a second higher capacitance of C2. The capacitance of the binary capacitor can be changed from C1 to C2 simply by changing the polarity of the applied D.C. voltage from a positive to a negative value.
    Type: Grant
    Filed: May 3, 1999
    Date of Patent: April 3, 2001
    Assignee: Silicon Wave, Inc.
    Inventors: Lars Henrik Mucke, Christopher Dennis Hull, Lars Gustaf Jansson