Patents by Inventor Lars Lauer
Lars Lauer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10371778Abstract: In a method and apparatus for recording a magnetic resonance data set, an MR data acquisition scanner is operated to acquire a range of basic values of a material parameter of a subject, with a basic resolution within a region of the subject. Thereafter, the aforementioned resolution is refined by selecting a refinement acquisition sequence, dependent on a material property to be refined, and then again operating the scanner to acquire further values for the refinement material parameter with a refined resolution, compared to the original resolution.Type: GrantFiled: March 13, 2017Date of Patent: August 6, 2019Assignee: Siemens Healthcare GmbHInventor: Lars Lauer
-
Publication number: 20190206527Abstract: In a method and a computer for identifying a group of persons, from a number of persons, to whom at least one contrast agent has been applied during an examination which was carried out in an imaging system with which medical images of each of the number of persons were produced, existing examination data provided for each of the number of persons are used to determine to which of those persons the at least one contrast agent was applied. The persons to whom at least one contrast agent was applied during the examination are identified as a group of persons. For each person in the group, person-specific contrast agent data are determined that include at least identification information identifying the person to whom the at least one contrast agent was applied, and contrast agent information identifying the fact that the at least one contrast agent was applied. A designation of each person in the group of persons is stored with that person's corresponding person-specific contrast agent data in a register.Type: ApplicationFiled: December 29, 2017Publication date: July 4, 2019Applicants: Siemens Healthcare GmbH, Siemens Medical Solutions USA, Inc.Inventors: Christine Boehm, Robert Krieg, Richard Frank, Lars Lauer
-
Patent number: 10324594Abstract: A system for generating medical image scanner configurations includes a scanner configuration database and a simulation component. The database stores a scanner configuration dataset corresponding to a medical image scanner. The simulation component includes a display module which is configured to present a graphical user interface (GUI) utilized by the medical image scanner, and an editing module which is configured to create a modified scanner configuration dataset based on commands received from a user via the GUI. Additionally, the simulation component includes a simulation module which is configured to (i) perform a simulation of the medical image scanner using the modified scanner configuration dataset to yield simulated results, (ii) use the display module to present the simulated results in the GUI, and (iii) in response to receiving user approval of the simulated results via the GUI, save the modified scanner configuration dataset to the database.Type: GrantFiled: October 30, 2015Date of Patent: June 18, 2019Assignee: Siemens Healthcare GmbHInventors: Heiko Meyer, Jacob Stolk, Vibhas S. Deshpande, Keith Aaron Heberlein, Peter Kollasch, Abraham Padua, Jr., Dieter Faust, Lars Lauer
-
Patent number: 10209325Abstract: A configurable coil arrangement for use with MRI-guided procedures is provided that facilitates optimal imaging for both pre-procedure planning and imaging of the target sites during the procedure. The coil arrangement includes a plurality of connected coil elements. Spacers connecting the coil elements can be adjustable and/or deformable to provide one or more openings in the coil arrangement of optimal size for accessing the subject within the imaged region. Individual coil elements can also be removed to provide access openings during such procedures, or left in the array for improved pre- and post-procedure image quality. The MRI system can be configured to detect configurations of the coil arrangement and modify imaging parameters to optimize image quality.Type: GrantFiled: February 29, 2016Date of Patent: February 19, 2019Assignees: Siemens Healthcare GmbH, The Johns Hopkins UniversityInventors: Eva Rothgang, Volker Matschl, Arne Hengerer, Lars Lauer, Wesley David Gilson, Jonathan Lewin, Jan Fritz, Clifford Weiss, Katarzyna Macura, Paul Bottomley
-
Publication number: 20190041478Abstract: In a method and apparatus for determining measurement protocol parameters of a magnetic resonance (MR) image, a first MR image exhibiting first contrast properties, is read into a computer and at least one first contrast ratio is determined in the computer from the first contrast properties. The computer then determines the measurement protocol parameters dependent on the at least one first contrast ratio, in order to generate a second MR image exhibiting second contrast properties such that the second contrast properties approximate, as closely as possible, to the first contrast properties. The measurement protocol parameters are presented as an output from the computer.Type: ApplicationFiled: August 1, 2018Publication date: February 7, 2019Applicant: Siemens Healthcare GmbHInventors: David Grodzki, Donald Hardie, Katharina Hesels, Lars Lauer, Edgar Mueller
-
Patent number: 10180469Abstract: A magnetic resonance imaging system and method are provided that include user control of certain functions using physical gestures, such as hand motions or the like. The gesture control aspects can include one or more cameras, and a processor configured to detect and recognize gestures corresponding to predetermined commands and to provide signals to execute the commands. A verification switch, such as a foot switch, can be included to improve safety and reliability of the gesture control aspects. This switch can be used to activate the gesture detection aspects and/or to confirm a recognized gesture command prior to its execution.Type: GrantFiled: October 28, 2015Date of Patent: January 15, 2019Assignees: Siemens Healthcare GmbH, The John Hopkins UniversityInventors: Arne Hengerer, Eva Rothgang, Lars Lauer, Jonathan Lewin, Wesley David Gilson, Jan Fritz, Clifford R. Weiss, Katarzyna J. Macura, Paul A. Bottomley
-
Patent number: 10151813Abstract: In a magnetic resonance (MR) apparatus and a method for operation thereof, the radio-frequency (RF) resonator of the scanner of the apparatus fed from a single RF source and is operated, during a total scan duration for acquiring MR scan data from a subject, so as to excite nuclear spins in the subject with respective RF fields having different B1+ field profiles that are radiated at respectively different times during the acquisition of the scan data. The scan data acquired during the scan thus are produced from MR signals caused by nuclear spins excited by at least two different B1+ field profiles. The scan can be used to acquire MR data for MR fingerprinting.Type: GrantFiled: June 29, 2016Date of Patent: December 11, 2018Assignees: Siemens Healthcare GmbH, New York UniversityInventors: Martijn Cloos, Lars Lauer, Daniel Sodickson, Graham Wiggins
-
Publication number: 20180289261Abstract: A magnetic resonance system that is designed to carry out an examination of an examination object, and has an RF controller, a gradient controller and an image sequence controller, which are designed to acquire MR data of a volume portion of the examination object. An arithmetic unit of the magnetic resonance system is designed to reconstruct MR images from the acquired MR data. A standardized REST-based HTTP radio interface of the magnetic resonance system is designed to establish a standardized wireless connection to at least one external device.Type: ApplicationFiled: April 11, 2018Publication date: October 11, 2018Applicant: Siemens Healthcare GmbHInventors: Arne Hengerer, Lars Lauer, Eva Rothgang, Rainer Schneider, Dirk Franger
-
Patent number: 10054655Abstract: In a method and computer for the representation of magnetic resonance data, and a method and computer for storing magnetic resonance data in a computer, magnetic resonance data are acquired from an object under investigation, the acquired data represents a spatially resolved distribution of values of a number of tissue parameters in the object. A tree structure is created that has a trunk and a number of first tree elements branching from the trunk. A first tissue parameter among the multiple tissue parameters is assigned to the trunk and a second tissue parameter among the multiple tissue parameters is assigned to the number of first tree elements. The tree structure with respect to the acquired values of the multiple tissue parameters, so an adapted tree structure is compiled. The adapted tree structure is presented for a user on a display monitor.Type: GrantFiled: August 19, 2016Date of Patent: August 21, 2018Assignee: Siemens Healthcare GmbHInventor: Lars Lauer
-
Publication number: 20180220925Abstract: A system and method are provided for determining a position of a subject under examination during implementation of a medical imaging procedure. A radiation generating unit generates optical radiation that is used to illuminate the subject under examination. The subject under examination blocks the generated optical radiation to produce a shadow. The shadow is detected by an optical detection unit and used by a position determination unit to determine a position of the subject under examination.Type: ApplicationFiled: February 2, 2018Publication date: August 9, 2018Inventors: Lars Lauer, Steffen Schröter
-
Publication number: 20180218338Abstract: In a computer-implemented method for scheduling customer appointments in one or more service centers, wherein at least some of the customers was a mobile device having a location tracking function and a message transmission function, a central appointments scheduling system manages customer appointments, which has assigned an available time window to at least one customer. A default of a customer appointment of a first customer is recorded. The position of at least one second customer, whose available time window overlaps with the defaulted customer appointment, is detected through the use of the location tracking function of the mobile device and communication of the position to the central appointments scheduling system. The expected travel time of the second customer to the service center is calculated and, if the travel time is shorter than the time remaining up to the start time of the defaulted appointment, an offer is sent to the second customer to accept the defaulted appointment.Type: ApplicationFiled: January 26, 2018Publication date: August 2, 2018Applicant: Siemens Healthcare GmbHInventors: Arne Hengerer, Lars Lauer, Eva Rothgang, Rainer Schneider
-
Patent number: 9945919Abstract: A method is provided for modified gradient timing in a Magnetic Resonance (MR) imaging system. The method includes generating radio frequency (RF) excitation pulses in a volume of patient anatomy to provide subsequent acquisition of associated RF echo data and generating a sequence of gradient waveforms on a static magnetic field in three directions each orthogonal to each other for slice selection, phase encoding and readout RF data acquisition in the volume of patient anatomy. The method also includes receiving, by a controller, an indication of the sequence of gradient waveforms to be applied to a plurality of gradient coils and modifying, via the controller, the sequence of gradient waveforms to be applied to the plurality of gradient coils based on one or more parameters to produce a sequence of modified gradient waveforms. The method further includes providing the sequence of modified gradient waveforms to the plurality of gradient coils.Type: GrantFiled: October 9, 2014Date of Patent: April 17, 2018Assignee: Siemens Healthcare GmbHInventors: Sven Zuehlsdorff, Haris Saybasili, Lars Lauer, David Grodzki
-
Publication number: 20170315200Abstract: In a method for displaying quantitative magnetic resonance image data, and a processor, and a magnetic resonance (MR) apparatus that implement such a method, first quantitative MR image data of an examination object are provided to the processor, the first quantitative MR image having been obtained using an MR scanner with a first basic magnetic field strength. The first quantitative magnetic resonance image data are converted in the processor from the first basic magnetic field strength to a second basic magnetic field strength, thereby generating second quantitative MR image data, which are then displayed.Type: ApplicationFiled: April 28, 2017Publication date: November 2, 2017Applicant: Siemens Healthcare GmbHInventors: Berthold Kiefer, Lars Lauer, Heiko Meyer, Edgar Mueller, Elmar Rummert, David Grodzki
-
Publication number: 20170276742Abstract: Sterile RF coil arrangements for use in magnetic resonance imaging are provided. The sterile coil arrangements can be formed by spraying or coating a curable liquid onto an RF coil housing and allowing the liquid to cure or dry to form a continuous sterile layer on the coil housing. The thickness of the sterile layer can be between 100 and 1000 micrometers. The curable liquid can include an antimicrobial or antibacterial agent, such as silver ions or triclosan, to better maintain sterility of the coil arrangement. The curable liquid can be selected such that it adheres to the housing when cured and is also removable without leaving residue behind.Type: ApplicationFiled: March 28, 2016Publication date: September 28, 2017Inventors: Arne Hengerer, Eva Rothgang, Lars Lauer, Jonathan Lewin, Jan Fritz, Clifford Weiss, Katarzyna J. Macura, Paul Bottomley, Wesley David Gilson
-
Publication number: 20170269174Abstract: A magnetic resonance method and system are provided for magnetic resonance (MR) image-guided insertion of an object into a biological tissue along a predetermined trajectory. The trajectory provides a path between a starting point and a target site within the tissue. Sufficiently high resolution images can be generated in real time to precisely guide the needle placement. A compressed sensing approach is used to generate the images based on minimization of a cost function, where the cost function is based on the predetermined needle path, artifact effects associated with the needle, the negligible changes in the images away from the trajectory, and the limited differences between successive images. The improved combination of spatial and temporal resolution facilitates an insertion procedure that can be continuously adjusted to accurately follow a predetermined trajectory in the tissue, without interruptions to obtain verification images.Type: ApplicationFiled: March 15, 2016Publication date: September 21, 2017Inventors: Eva Rothgang, Arne Hengerer, Lars Lauer, Jan Fritz, Paul Bottomley, Wesley David Gilson, Robert Grimm
-
Publication number: 20170261579Abstract: In a method and apparatus for recording a magnetic resonance data set, an MR data acquisition scanner is operated to acquire a range of basic values of a material parameter of a subject, with a basic resolution within a region of the subject. Thereafter, the aforementioned resolution is refined by selecting a refinement acquisition sequence, dependent on a material property to be refined, and then again operating the scanner to acquire further values for the refinement material parameter with a refined resolution, compared to the original resolution.Type: ApplicationFiled: March 13, 2017Publication date: September 14, 2017Applicant: Siemens Healthcare GmbHInventor: Lars Lauer
-
Publication number: 20170248666Abstract: A configurable coil arrangement for use with MRI-guided procedures is provided that facilitates optimal imaging for both pre-procedure planning and imaging of the target sites during the procedure. The coil arrangement includes a plurality of connected coil elements. Spacers connecting the coil elements can be adjustable and/or deformable to provide one or more openings in the coil arrangement of optimal size for accessing the subject within the imaged region. Individual coil elements can also be removed to provide access openings during such procedures, or left in the array for improved pre- and post-procedure image quality. The MRI system can be configured to detect configurations of the coil arrangement and modify imaging parameters to optimize image quality.Type: ApplicationFiled: February 29, 2016Publication date: August 31, 2017Inventors: Eva Rothgang, Volker Matschl, Arne Hengerer, Lars Lauer, Wesley David Gilson, Jonathan Lewin, Jan Fritz, Clifford Weiss, Katarzyna Macura, Paul Bottomley
-
Patent number: 9671476Abstract: A method and a local coil for a magnetic resonance imaging (MRI) system are provided. The local coil includes a hand coil having a plurality of rings, each made of a plurality of coil elements.Type: GrantFiled: January 14, 2014Date of Patent: June 6, 2017Assignee: Siemens AktiengesellschaftInventors: Lars Lauer, Dominik Paul, Götz Welsch
-
Publication number: 20170123030Abstract: A magnetic resonance imaging system and method are provided that include user control of certain functions using physical gestures, such as hand motions or the like. The gesture control aspects can include one or more cameras, and a processor configured to detect and recognize gestures corresponding to predetermined commands and to provide signals to execute the commands. A verification switch, such as a foot switch, can be included to improve safety and reliability of the gesture control aspects. This switch can be used to activate the gesture detection aspects and/or to confirm a recognized gesture command prior to its execution.Type: ApplicationFiled: October 28, 2015Publication date: May 4, 2017Inventors: Arne Hengerer, Eva Rothgang, Lars Lauer, Jonathan Lewin, Wesley David Gilson, Jan Fritz, Clifford R. Weiss, Katarzyna J. Macura, Paul A. Bottomley
-
Publication number: 20170123612Abstract: A system for generating medical image scanner configurations includes a scanner configuration database and a simulation component. The database stores a scanner configuration dataset corresponding to a medical image scanner. The simulation component includes a display module which is configured to present a graphical user interface (GUI) utilized by the medical image scanner, and an editing module which is configured to create a modified scanner configuration dataset based on commands received from a user via the GUI. Additionally, the simulation component includes a simulation module which is configured to (i) perform a simulation of the medical image scanner using the modified scanner configuration dataset to yield simulated results, (ii) use the display module to present the simulated results in the GUI, and (iii) in response to receiving user approval of the simulated results via the GUI, save the modified scanner configuration dataset to the database.Type: ApplicationFiled: October 30, 2015Publication date: May 4, 2017Inventors: Heiko Meyer, Jacob Stolk, Vibhas S. Deshpande, Keith Aaron Heberlein, Peter Kollasch, Abraham Padua, JR., Dieter Faust, Lars Lauer