Patents by Inventor Lars Wilko Sommer

Lars Wilko Sommer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11404728
    Abstract: A system includes a first optical sensor sensitive to both a parameter of interest, Parameter1, and at least one confounding parameter, Parameter2 and a second optical sensor sensitive only to the confounding parameter. Measurement circuitry measures M1 in response to light scattered by the first optical sensor, where M1=value of Parameter1+K*value of Parameter2. The measurement circuitry also measures M2 in response to light scattered by the second optical sensor, where M2=value of Parameter2. Compensation circuitry determines a compensation factor, K, for the confounding parameter based on measurements of M1 and M2 taken over multiple load/unload cycles or over one or more thermal cycles. The compensation factor is used to determine the parameter of interest.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: August 2, 2022
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Anurag Ganguli, Julian Schwartz, Ajay Raghavan, Peter Kiesel, Bhaskar Saha, Saroj Sahu, Lars Wilko Sommer
  • Publication number: 20210167427
    Abstract: A system includes a first optical sensor sensitive to both a parameter of interest, Parameter1, and at least one confounding parameter, Parameter2 and a second optical sensor sensitive only to the confounding parameter. Measurement circuitry measures M1 in response to light scattered by the first optical sensor, where M1=value of Parameter1+K*value of Parameter2. The measurement circuitry also measures M2 in response to light scattered by the second optical sensor, where M2=value of Parameter2. Compensation circuitry determines a compensation factor, K, for the confounding parameter based on measurements of M1 and M2 taken over multiple load/unload cycles or over one or more thermal cycles. The compensation factor is used to determine the parameter of interest.
    Type: Application
    Filed: November 30, 2020
    Publication date: June 3, 2021
    Inventors: Anurag Ganguli, Julian Schwartz, Ajay Raghavan, Peter Kiesel, Bhaskar Saha, Saroj Sahu, Lars Wilko Sommer
  • Patent number: 10854932
    Abstract: A system includes a first optical sensor sensitive to both a parameter of interest, Parameter1, and at least one confounding parameter, Parameter2 and a second optical sensor sensitive only to the confounding parameter. Measurement circuitry measures M1 in response to light scattered by the first optical sensor, where M1=value of Parameter1+K*value of Parameter2. The measurement circuitry also measures M2 in response to light scattered by the second optical sensor, where M2=value of Parameter2. Compensation circuitry determines a compensation factor, K, for the confounding parameter based on measurements of M1 and M2 taken over multiple load/unload cycles or over one or more thermal cycles. The compensation factor is used to determine the parameter of interest.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: December 1, 2020
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Anurag Ganguli, Julian Schwartz, Ajay Raghavan, Peter Kiesel, Bhaskar Saha, Saroj Sahu, Lars Wilko Sommer
  • Patent number: 10777855
    Abstract: A battery includes a folded bicell battery stack with an embedded fiber optic cable and sensor. A cell casing encloses the bicell stack with at least one fiber optic cable is embedded within the battery. The fiber optic cable includes an internal portion disposed within the cell casing and having at least one optical sensor disposed thereon. An external portion of the fiber optic cable protrudes from the casing. A sealing gasket is disposed at least partially around the fiber optic cable and between the cell sealing edges at a point of entry of the fiber optic cable into the battery.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: September 15, 2020
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Ajay Raghavan, Peter Kiesel, Lars Wilko Sommer, Bhaskar Saha, Saroj Sahu, Alexander Lochbaum, Tobias Staudt, Chang-Jun Bae, Mohamed Alamgir, Hoe Jin Hah, Bokkyu Choi, Gyu-Ok Hwang, Geun-Chang Chung
  • Publication number: 20200006818
    Abstract: A battery includes a folded bicell battery stack with an embedded fiber optic cable and sensor. A cell casing encloses the bicell stack with at least one fiber optic cable is embedded within the battery. The fiber optic cable includes an internal portion disposed within the cell casing and having at least one optical sensor disposed thereon. An external portion of the fiber optic cable protrudes from the casing. A sealing gasket is disposed at least partially around the fiber optic cable and between the cell sealing edges at a point of entry of the fiber optic cable into the battery.
    Type: Application
    Filed: September 3, 2019
    Publication date: January 2, 2020
    Inventors: Ajay Raghavan, Peter Kiesel, Lars Wilko Sommer, Bhaskar Saha, Saroj Sahu, Alexander Lochbaum, Tobias Staudt, Chang-Jun Bae, Mohamed Alamgir, Hoe Jin Hah, Bokkyu Choi, Gyu-Ok Hwang, Geun-Chang Chung
  • Patent number: 10446886
    Abstract: A battery includes a folded bicell battery stack with an embedded fiber optic cable and sensor. A cell casing encloses the bicell stack with at least one fiber optic cable is embedded within the battery. The fiber optic cable includes an internal portion disposed within the cell casing and having at least one optical sensor disposed thereon. An external portion of the fiber optic cable protrudes from the casing. A sealing gasket is disposed at least partially around the fiber optic cable and between the cell sealing edges at a point of entry of the fiber optic cable into the battery.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: October 15, 2019
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Ajay Raghavan, Peter Kiesel, Lars Wilko Sommer, Bhaskar Saha, Saroj Sahu, Alexander Lochbaum, Tobias Staudt, Chang-Jun Bae, Mohamed Alamgir, Hoe Jin Hah, Bokkyu Choi, Gyu-Ok Hwang, Geun-Chang Chung
  • Patent number: 9583796
    Abstract: A method for determining an operating state (e.g., state-of-charge or state-of-health) and/or generating management (charge/discharge) control information in a system including an electrochemical energy device (EED, e.g., a rechargeable Li-ion battery, supercapacitor or fuel cell) that uses optical sensors to detect the intercalation stage change events occurring in the EED. The externally or internally mounted optical sensors measure operating parameter (e.g., strain and/or temperature) changes of the EED during charge/recharge cycling, and transmit measured parameter data using light signals sent over optical fibers to a detector/converter. A processor then analyzes the measured parameter data, e.g., using a model-based estimation process, to detect intercalation stage changes (i.e., crystalline structure changes caused by migration of guest species, such as Li-ions, between the EED's anode and cathode), and generates the operating state and charge/discharge control information based the analysis.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: February 28, 2017
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Bhaskar Saha, Ajay Raghavan, Peter Kiesel, Lars Wilko Sommer, Alexander Lochbaum, Tobias Staudt, Saroj Kumar Sahu, Anurag Ganguli
  • Publication number: 20170033414
    Abstract: A system includes a first optical sensor sensitive to both a parameter of interest, Parameter1, and at least one confounding parameter, Parameter2 and a second optical sensor sensitive only to the confounding parameter. Measurement circuitry measures M1 in response to light scattered by the first optical sensor, where M1=value of Parameter1+K*value of Parameter2. The measurement circuitry also measures M2 in response to light scattered by the second optical sensor, where M2=value of Parameter2. Compensation circuitry determines a compensation factor, K, for the confounding parameter based on measurements of M1 and M2 taken over multiple load/unload cycles or over one or more thermal cycles. The compensation factor is used to determine the parameter of interest.
    Type: Application
    Filed: July 28, 2015
    Publication date: February 2, 2017
    Inventors: Anurag Ganguli, Julian Schwartz, Ajay Raghavan, Peter Kiesel, Bhaskar Saha, Saroj Sahu, Lars Wilko Sommer
  • Patent number: 9553465
    Abstract: A battery management system includes one or more fiber optic sensors configured to be disposed within an electrochemical battery. Each fiber optic sensor is capable of receiving input light and providing output light that varies based on the input light and an amount of free or dissolved gas present within the battery. A detector detects the output light and generates an electrical detector signal in response to the output light. Battery management circuitry determines the state of the battery based at least in part on the detector signal.
    Type: Grant
    Filed: April 21, 2014
    Date of Patent: January 24, 2017
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Ajay Raghavan, Peter Kiesel, Alexander Lochbaum, Bhaskar Saha, Lars Wilko Sommer, Tobias Staudt
  • Publication number: 20160028129
    Abstract: A battery includes a folded bicell battery stack with an embedded fiber optic cable and sensor. A cell casing encloses the bicell stack with at least one fiber optic cable is embedded within the battery. The fiber optic cable includes an internal portion disposed within the cell casing and having at least one optical sensor disposed thereon. An external portion of the fiber optic cable protrudes from the casing. A sealing gasket is disposed at least partially around the fiber optic cable and between the cell sealing edges at a point of entry of the fiber optic cable into the battery.
    Type: Application
    Filed: July 23, 2014
    Publication date: January 28, 2016
    Inventors: Ajay Raghavan, Peter Kiesel, Lars Wilko Sommer, Bhaskar Saha, Saroj Sahu, Alexander Lochbaum, Tobias Staudt, Chang-Jun Bae, Mohamed Alamgir, Hoe Jin Hah, Bokkyu Choi, Gyu-Ok Hwang, Geun-Chang Chung
  • Patent number: 9209494
    Abstract: A system includes utilizes optical sensors arranged within or on portions of an electrochemical energy device (e.g., a rechargeable Li-ion battery, supercapacitor or fuel cell) to measure operating parameters (e.g., mechanical strain and/or temperature) of the electrochemical energy device during charge/recharge cycling. The measured parameter data is transmitted by way of light signals along optical fibers to a controller, which converts the light signals to electrical data signal using a light source/analyzer. A processor then extracts temperature and strain data features from the data signals, and utilizes a model-based process to detect intercalation stage changes (i.e., characteristic crystalline structure changes caused by certain concentrations of guest species, such as Li-ions, within the electrode material of the electrochemical energy device) indicated by the data features. The detected intercalation stage changes are used to generate highly accurate operating state information (e.g.
    Type: Grant
    Filed: April 1, 2014
    Date of Patent: December 8, 2015
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Peter Kiesel, Lars Wilko Sommer, Ajay Raghavan, Bhaskar Saha, Tobias Staudt, Alexander Lochbaum
  • Patent number: 9201000
    Abstract: Sensor material is arranged to interact with input light and to asymmetrically alter a spectral distribution of the input light in response to presence of an external stimulus. A detector is configured to sense the altered input light and to generate at least one electrical signal comprising information about a shift in the centroid of a spectral distribution of the altered input light relative to a centroid of the spectral distribution of the input light.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: December 1, 2015
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Peter Kiesel, Alexander Lochbaum, Ajay Raghavan, Bhaskar Saha, Tobias Staudt, Lars Wilko Sommer
  • Publication number: 20150303723
    Abstract: A battery management system includes one or more fiber optic sensors configured to be disposed within an electrochemical battery. Each fiber optic sensor is capable of receiving input light and providing output light that varies based on the input light and an amount of free or dissolved gas present within the battery. A detector detects the output light and generates an electrical detector signal in response to the output light. Battery management circuitry determines the state of the battery based at least in part on the detector signal.
    Type: Application
    Filed: April 21, 2014
    Publication date: October 22, 2015
    Inventors: Ajay Raghavan, Peter Kiesel, Alexander Lochbaum, Bhaskar Saha, Lars Wilko Sommer, Tobias Staudt
  • Publication number: 20150280290
    Abstract: A method for determining an operating state (e.g., state-of-charge or state-of-health) and/or generating management (charge/discharge) control information in a system including an electrochemical energy device (EED, e.g., a rechargeable Li-ion battery, supercapacitor or fuel cell) that uses optical sensors to detect the intercalation stage change events occurring in the EED. The externally or internally mounted optical sensors measure operating parameter (e.g., strain and/or temperature) changes of the EED during charge/recharge cycling, and transmit measured parameter data using light signals sent over optical fibers to a detector/converter. A processor then analyzes the measured parameter data, e.g., using a model-based estimation process, to detect intercalation stage changes (i.e., crystalline structure changes caused by migration of guest species, such as Li-ions, between the EED's anode and cathode), and generates the operating state and charge/discharge control information based the analysis.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 1, 2015
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Bhaskar Saha, Ajay Raghavan, Peter Kiesel, Lars Wilko Sommer, Alexander Lochbaum, Tobias Staudt, Saroj Kumar Sahu, Anurag Ganguli
  • Publication number: 20150185139
    Abstract: Sensor material is arranged to interact with input light and to asymmetrically alter a spectral distribution of the input light in response to presence of an external stimulus. A detector is configured to sense the altered input light and to generate at least one electrical signal comprising information about a shift in the centroid of a spectral distribution of the altered input light relative to a centroid of the spectral distribution of the input light.
    Type: Application
    Filed: December 27, 2013
    Publication date: July 2, 2015
    Inventors: Peter Kiesel, Alexander Lochbaum, Ajay Raghavan, Bhaskar Saha, Tobias Staudt, Lars Wilko Sommer
  • Publication number: 20140203783
    Abstract: A system includes utilizes optical sensors arranged within or on portions of an electrochemical energy device (e.g., a rechargeable Li-ion battery, supercapacitor or fuel cell) to measure operating parameters (e.g., mechanical strain and/or temperature) of the electrochemical energy device during charge/recharge cycling. The measured parameter data is transmitted by way of light signals along optical fibers to a controller, which converts the light signals to electrical data signal using a light source/analyzer. A processor then extracts temperature and strain data features from the data signals, and utilizes a model-based process to detect intercalation stage changes (i.e., characteristic crystalline structure changes caused by certain concentrations of guest species, such as Li-ions, within the electrode material of the electrochemical energy device) indicated by the data features. The detected intercalation stage changes are used to generate highly accurate operating state information (e.g.
    Type: Application
    Filed: April 1, 2014
    Publication date: July 24, 2014
    Applicant: Palo Alto Research Center Incorporated
    Inventors: Peter Kiesel, Lars Wilko Sommer, Ajay Raghavan, Bhaskar Saha, Tobias Staudt, Alexander Lochbaum