Patents by Inventor Laszlo Huber

Laszlo Huber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5991172
    Abstract: A new single stage, single switch input current shaping circuit features substantially reduced turn-on switching losses of the switch in the flyback-converter. In this technique, the turn-on switching losses due to the discharge of the output capacitance of the switch are reduced by turning on the switch when its voltage is minimal or close to the minimal. To achieve the turn-on loss reduction for a wide range of line and load conditions, the flyback-converter stage is continuously operated at the boundary of the CCM and DCM by employing a variable-frequency control. In this technique the boost inductor can work either in the DCM or the CCM. The wide-bandwidth, variable-frequency control is implemented by detecting the onset of the DCM/CCM boundary and, subsequently, turning the switch on at the minimum switch voltage. The switch is turned off when the increasing primary current reaches a reference level set by the output-voltage feedback control circuit.
    Type: Grant
    Filed: March 2, 1998
    Date of Patent: November 23, 1999
    Assignee: Delta Electronics, Inc.
    Inventors: Milan M. Jovanovic, Laszlo Huber
  • Patent number: 5757626
    Abstract: A new single-stage, single-switch, input-current-shaping technique which combines the boost-like input-current shaper with a continuous-conduction-mode dc/dc output stage is described. Due to the ability to keep a relatively low voltage (<450 Vdc) on the energy-storage capacitor, this technique is suitable for the universal line-voltage applications. The voltage on the energy-storage capacitor is kept within the desirable range by the addition of two transformer windings. One winding appears in series with the boost inductor during the on time, whereas the other winding appears in series with the same inductor during the off time. By connecting the windings so that the voltages across them when they conduct the inductor current are in opposition to the input voltage, the volt-second balance of the boost-inductor core is achieved at a substantially lower voltage of the energy-storage capacitor compared to the other known approaches.
    Type: Grant
    Filed: October 4, 1996
    Date of Patent: May 26, 1998
    Assignee: Delta Electronics Inc.
    Inventors: Milan M. Jovanovic, Laszlo Huber