Patents by Inventor Laura Gill

Laura Gill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10283796
    Abstract: A complete fuel cell system (10) is disclosed. The fuel cell system (10) comprises at least two fuel precursors (16, 18) that react to create hydrogen. A solid fuel precursor (18) can be carried in disposable fuel cartridges (100). A passive pressure control system including a dose pump (22) and a pressure equalization system (24, 300, 504) is provided to dose a liquid fuel precursor (16) to the solid fuel precursor (18) in the fuel cartridge (100). The solid fuel precursor (18) may include larger metallic particles coated by another fine metallic particles such that multiple micro galvanic cells are formed on the surface of the larger metallic particles. The fuel cell system (10) may also include a gas buffer (40) that stores produced hydrogen that is unneeded by the fuel cell, a water trapping mechanism (604) and an electronic vent (46) that consumes unneeded hydrogen.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: May 7, 2019
    Assignee: INTELLIGEN ENERGY LIMITED
    Inventors: Gerard F. McLean, Laura Gill, Jean-Louis Iaconis, Jeremy Schrooten, Mikhail Gurin, Benjamin Tam, Sally Seaman, Joerg Zimmermann
  • Publication number: 20150118588
    Abstract: A complete fuel cell system (10) is described. The fuel cell system (10) comprises at least two fuel precursors (16, 18) that react to create hydrogen. A solid fuel precursor (18) can be carried in disposable fuel cartridges (100). A passive pressure control system including a dose pump (22) and a pressure equalization system (24, 300, 504) is provided to dose a liquid fuel precursor (16) to the solid fuel precursor (18) in the fuel cartridge (100). An outer wall (102) of the fuel cartridge can form a part of the passive pressure control system. The solid fuel precursor may include larger metallic particles coated by another fine metallic particles such that multiple micro galvanic cells are formed on the surface of the larger metallic particles. The fuel cell system may also include a gas buffer (40) that stores produced hydrogen that in unneeded by the fuel cell, and a water trapping mechanism (604). The fuel cell system may also have an electronic vent (46) that consumes unneeded hydrogen.
    Type: Application
    Filed: February 10, 2012
    Publication date: April 30, 2015
    Applicant: SOCIETE BIC
    Inventors: Gerard F. McLean, Laura Gill, Jean-Louis Iaconis, Jeremy Schrooten, Mikhail Gurin, Benjamin Tam, Sally Seaman, Joerg Zimmermann
  • Publication number: 20130043125
    Abstract: A hydrogen generation system comprising a solid fuel that reacts with an aqueous liquid to generate hydrogen is disclosed. The solid fuel comprises first metallic particles coated by smaller second metallic particles, such that multiple galvanic cells are formed on a surface of the first metallic particles between the metals in the first metallic particles and the second metallic particles. The first metallic particles can be further covered by smaller third particles. An example of the solid fuel is hybrid particles formed by larger magnesium particles coated by smaller iron and silicon particles. The solid fuel may also include salt such as sodium chloride and/or a fire retardant such as potassium chloride. The salt may be added to the aqueous liquid instead. The solid fuel can be formed into fuel pellets, or can be suspended in a suspension agent to form slurries or gels.
    Type: Application
    Filed: February 10, 2012
    Publication date: February 21, 2013
    Applicant: Societe BIC
    Inventors: Laura Gill, Jeremy Schrooten, Mikhail Gurin, Sally Seaman, Joerg Zimmermann, Tao Wang, Will Skrivan
  • Publication number: 20100078122
    Abstract: Embodiments of the invention relate to a method of manufacturing a fluid enclosure. The method includes reducing the size of active material particles sufficient to provide a maximum active material particle size substantially within the same order of size as the active material particle decrepitation size, contacting the particles with a binder sufficient to provide a mixture, pressing the mixture sufficient to provide a compacted mixture, heating the compacted mixture sufficient to form a fluid storage component and conformably coupling an outer enclosure wall to the fluid storage component sufficient to provide a fluid enclosure.
    Type: Application
    Filed: October 1, 2009
    Publication date: April 1, 2010
    Applicant: Angstrom Power Incorporated
    Inventors: Joerg Zimmermann, Tristan Sloan, Mikhail Gurin, Laura Gill