Patents by Inventor Laura H. Lewis

Laura H. Lewis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11462358
    Abstract: The invention provides method for making high coercivity magnetic materials based on FeNi alloys having a L10 phase structure, tetratenite, and provides a system for accelerating production of these materials. The FeNi alloy is made by preparing a melt comprising Fe, Ni, and optionally one or more elements selected from the group consisting of Ti, V, Al, B, C, Mo, Ir, and Nb; cooling the melt and applying extensional stress and a magnetic field. This is followed by heating and cooling to form the L10 structure.
    Type: Grant
    Filed: August 20, 2018
    Date of Patent: October 4, 2022
    Inventors: Laura H. Lewis, Ian J. McDonald, Sahar Keshavarz, R. William McCallum
  • Publication number: 20210035733
    Abstract: The invention provides method for making high coercivity magnetic materials based on FeNi alloys having a Llo phase structure, tetratenite, and provides a system for accelerating production of these materials. The FeNi alloy is made by preparing a melt comprising Fe, Ni, and optionally one or more elements selected from the group consisting of Ti, V, Al, B, C, Mo, Ir, and Nb; cooling the melt and applying extensional stress and a magnetic field. This is followed by heating and cooling to form the L10 structure.
    Type: Application
    Filed: August 20, 2018
    Publication date: February 4, 2021
    Inventors: Laura H. LEWIS, Ian J. McDONALD, Sahar KESHAVARZ, R. William McCALLUM
  • Patent number: 10332661
    Abstract: The invention provides rare earth-free permanent magnetic materials and methods of making them. The materials can be used to produce magnetic structures for use in a wide variety of commercial applications, such as motors, generators, and other electromechanical and electronic devices. Magnets fabricated using the materials can be substituted for magnets requiring rare earth elements that are costly and in limited supply. The invention provides two different types of magnetic materials. The first type is based on an iron-nickel alloy that is doped with one or more doping elements to promote the formation of L10 crystal structure. The second type is a nanocomposite particle containing magnetically hard and soft phases that interact to form an exchange spring magnetic material. The hard phase contains Fe or FeCo, and the soft phase contains AlMnC.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: June 25, 2019
    Assignees: Northeastern University, Carnegie Mellon University
    Inventors: Laura H. Lewis, Katayun Barmak
  • Publication number: 20180114614
    Abstract: The invention provides rare earth-free permanent magnetic materials and methods of making them. The materials can be used to produce magnetic structures for use in a wide variety of commercial applications, such as motors, generators, and other electromechanical and electronic devices. Magnets fabricated using the materials can be substituted for magnets requiring rare earth elements that are costly and in limited supply. The invention provides two different types of magnetic materials. The first type is based on an iron-nickel alloy that is doped with one or more doping elements to promote the formation of L10 crystal structure. The second type is a nanocomposite particle containing magnetically hard and soft phases that interact to form an exchange spring magnetic material. The hard phase contains Fe or FeCo, and the soft phase contains AlMnC.
    Type: Application
    Filed: September 20, 2017
    Publication date: April 26, 2018
    Inventors: Laura H. LEWIS, Jeffrey E. SHIELD, Katayun BARMAK VIZIRI
  • Publication number: 20170250024
    Abstract: The invention provides high coercivity magnetic materials based on FeNi alloys having an L10 phase structure, and methods for making the materials.
    Type: Application
    Filed: September 2, 2015
    Publication date: August 31, 2017
    Inventors: Laura H. LEWIS, Katayun BARMAK VAZIRI
  • Publication number: 20140210581
    Abstract: The invention provides rare earth-free permanent magnetic materials and methods of making them. The materials can be used to produce magnetic structures for use in a wide variety of commercial applications, such as motors, generators, and other electromechanical and electronic devices. Magnets fabricated using the materials can be substituted for magnets requiring rare earth elements that are costly and in limited supply. The invention provides two different types of magnetic materials. The first type is based on an iron-nickel alloy that is doped with one or more doping elements to promote the formation of L10 crystal structure. The second type is a nanocomposite particle containing magnetically hard and soft phases that interact to form an exchange spring magnetic material. The hard phase contains Fe or FeCo, and the soft phase contains AlMnC.
    Type: Application
    Filed: July 16, 2012
    Publication date: July 31, 2014
    Inventors: Laura H. Lewis, Jeffrey E. Shield, Katayun Barmak
  • Publication number: 20140065688
    Abstract: Disclosed herein are devices for the magnetophoretic separation of target biological materials including a separation chamber that has a plurality of channels, and one or more wires carrying a current, the wires generating a magnetic force that deflects magnetically-labeled target biological materials into a buffer stream. In addition, methods of separating target biological materials from non-target biological materials in a sample are disclosed. Finally, methods for constructing a magnetophoretic separation device are disclosed.
    Type: Application
    Filed: February 3, 2012
    Publication date: March 6, 2014
    Applicant: NORTHEASTERN UNIVERSITY
    Inventors: Shashi K. Murthy, Laura H. Lewis, Brian D. Plouffe