Patents by Inventor Lauren D. Field

Lauren D. Field has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11287430
    Abstract: A construct for detecting cellular membrane potential includes a nanoparticle operable as an electron donor; a modular peptide attached to the nanoparticle, the peptide comprising a nanoparticle association domain, a motif configured to mediate peptide insertion into the plasma membrane, and at least one attachment point for an electron acceptor positioned at a controlled distance from the nanoparticle; and an electron acceptor. The nanoparticle can be a quantum dot and the electron acceptor can be C60 fullerene. Emission correlates with cellular membrane potential.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: March 29, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James B. Delehanty, Michael H. Stewart, Okhil Nag, Jeffrey R. Deschamps, Kimihiro Susumu, Eunkeu Oh, Lauren D. Field, Alexander L. Efros, Alan L. Huston, Igor L. Medintz, Philip E. Dawson
  • Publication number: 20200355696
    Abstract: A construct for detecting cellular membrane potential includes a nanoparticle operable as an electron donor; a modular peptide attached to the nanoparticle, the peptide comprising a nanoparticle association domain, a motif configured to mediate peptide insertion into the plasma membrane, and at least one attachment point for an electron acceptor positioned at a controlled distance from the nanoparticle; and an electron acceptor. The nanoparticle can be a quantum dot and the electron acceptor can be C60 fullerene. Emission correlates with cellular membrane potential.
    Type: Application
    Filed: June 8, 2020
    Publication date: November 12, 2020
    Inventors: James B. Delehanty, Michael H. Stewart, Okhil Nag, Jeffrey R. Deschamps, Kimihiro Susumu, Eunkeu Oh, Lauren D. Field, Alexander L. Efros, Alan L. Huston, Igor L. Medintz, Philip E. Dawson
  • Patent number: 10780185
    Abstract: A construct for detecting cellular membrane potential includes a nanoparticle operable as an electron donor; a modular peptide attached to the nanoparticle, the peptide comprising a nanoparticle association domain, a motif configured to mediate peptide insertion into the plasma membrane, and at least one attachment point for an electron acceptor positioned at a controlled distance from the nanoparticle; and an electron acceptor. The nanoparticle can be a quantum dot and the electron acceptor can be C60 fullerene. Photoacoustic emission from the construct correlates with cellular membrane potential.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: September 22, 2020
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James B. Delehanty, Michael H. Stewart, Okhil Nag, Jeffrey R. Deschamps, Kimihiro Susumu, Eunkeu Oh, Lauren D. Field, Alexander L. Efros, Alan L. Huston, Igor L. Medintz, Philip E. Dawson, Nashaat Rasheed, Parag V. Chitnis, John R. Cressman
  • Patent number: 10705092
    Abstract: A construct for detecting cellular membrane potential includes a nanoparticle operable as an electron donor; a modular peptide attached to the nanoparticle, the peptide comprising a nanoparticle association domain, a motif configured to mediate peptide insertion into the plasma membrane, and at least one attachment point for an electron acceptor positioned at a controlled distance from the nanoparticle; and an electron acceptor. The nanoparticle can be a quantum dot and the electron acceptor can be C60 fullerene. Emission correlates with cellular membrane potential.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: July 7, 2020
    Assignee: The Government of the United States of Americam as Represented by the Secretary of the Navy
    Inventors: James B. Delehanty, Michael H. Stewart, Okhil Nag, Jeffrey R. Deschamps, Kimihiro Susumu, Eunkeu Oh, Lauren D. Field, Alexander L. Efros, Alan L. Huston, Igor L. Medintz, Philip E. Dawson
  • Publication number: 20190201547
    Abstract: A new nanoparticle (NP)-based, multicomponent delivery/reporter construct can mediate the controlled, spatiotemporal, active release of an appended cargo to the cytosol of mammalian cells. The construct comprises components including (1) a central NP scaffold, for example a photoluminescent quantum dot (QD); (2) a bridging structure that self-assembles to the NP surface (for example, histidine-tagged maltose binding protein); and (3) a cargo, for example a ligand-dye/drug conjugate, incorporating a ligand that allows the cargo to releasably bind to the bridging structure (e.g., a ?-cyclodextrin ligand for binding to maltose binding protein).
    Type: Application
    Filed: December 31, 2018
    Publication date: July 4, 2019
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: James B. Delehanty, Lauren D. Field, Igor L. Medintz, Scott Walper, Kimihiro Susumu, Guillermo Lasarte-Aragones
  • Publication number: 20180326097
    Abstract: A construct for detecting cellular membrane potential includes a nanoparticle operable as an electron donor; a modular peptide attached to the nanoparticle, the peptide comprising a nanoparticle association domain, a motif configured to mediate peptide insertion into the plasma membrane, and at least one attachment point for an electron acceptor positioned at a controlled distance from the nanoparticle; and an electron acceptor. The nanoparticle can be a quantum dot and the electron acceptor can be C60 fullerene. Photoacoustic emission from the construct correlates with cellular membrane potential.
    Type: Application
    Filed: July 10, 2018
    Publication date: November 15, 2018
    Inventors: James B. Delehanty, Michael H. Stewart, Okhil Nag, Jeffrey R. Deschamps, Kimihiro Susumu, Eunkeu Oh, Lauren D. Field, Alexander L. Efros, Alan L. Huston, Igor L. Medintz, Philip E. Dawson, Nashaat Rasheed, Parag V. Chitnis, John R. Cressman
  • Publication number: 20180217153
    Abstract: A construct for detecting cellular membrane potential includes a nanoparticle operable as an electron donor; a modular peptide attached to the nanoparticle, the peptide comprising a nanoparticle association domain, a motif configured to mediate peptide insertion into the plasma membrane, and at least one attachment point for an electron acceptor positioned at a controlled distance from the nanoparticle; and an electron acceptor. The nanoparticle can be a quantum dot and the electron acceptor can be C60 fullerene. Emission correlates with cellular membrane potential.
    Type: Application
    Filed: January 29, 2018
    Publication date: August 2, 2018
    Inventors: James B. Delehanty, Michael H. Stewart, Okhil Nag, Jeffrey R. Deschamps, Kimihiro Susumu, Eunkeu Oh, Lauren D. Field, Alexander L. Efros, Alan L. Huston, Igor L. Medintz, Philip E. Dawson