Patents by Inventor Lauren Nicole Miller Hayward

Lauren Nicole Miller Hayward has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170188843
    Abstract: A handheld device measures all vital signs and some hemodynamic parameters from the human body and transmits measured information wirelessly to a web-based system, where the information can be analyzed by a clinician to help diagnose a patient. The system utilizes our discovery that bio-impedance signals used to determine vital signs and hemodynamic parameters can be measured over a conduction pathway extending from the patient's wrist to a location on their thoracic cavity, e.g. their chest or navel. The device's form factor can include re-usable electrode materials to reduce costs. Measurements made by the handheld device, which use the belly button as a ‘fiducial’ marker, facilitate consistent, daily measurements, thereby reducing positioning errors that reduce accuracy of standard impedance measurements. In this and other ways, the handheld device provides an effective tool for characterizing patients with chronic diseases, such as heart failure, renal disease, and hypertension.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 6, 2017
    Inventors: Matthew BANET, Marshal Singh DHILLON, Susan Meeks PEDE, Lauren Nicole Miller HAYWARD, Arthur DEPTALA, Jonas Dean COCHRAN
  • Publication number: 20170188873
    Abstract: A handheld device measures all vital signs and some hemodynamic parameters from the human body and transmits measured information wirelessly to a web-based system, where the information can be analyzed by a clinician to help diagnose a patient. The system utilizes our discovery that bio-impedance signals used to determine vital signs and hemodynamic parameters can be measured over a conduction pathway extending from the patient's wrist to a location on their thoracic cavity, e.g. their chest or navel. The device's form factor can include re-usable electrode materials to reduce costs. Measurements made by the handheld device, which use the belly button as a ‘fiducial’ marker, facilitate consistent, daily measurements, thereby reducing positioning errors that reduce accuracy of standard impedance measurements. In this and other ways, the handheld device provides an effective tool for characterizing patients with chronic diseases, such as heart failure, renal disease, and hypertension.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 6, 2017
    Inventors: Matthew BANET, Marshal Singh DHILLON, Susan Meeks PEDE, Lauren Nicole Miller HAYWARD, Arthur DEPTALA, Jonas Dean COCHRAN
  • Publication number: 20170188956
    Abstract: A stand-on physiological sensor (e.g. floormat) measures vital signs and various hemodynamic parameters, including blood pressure and ECG waveforms. The sensor is similar in configuration to a common bathroom scale and includes electrodes that take electrical measurements from a patient's feet to generate bioimpedance waveforms, which are analyzed digitally to extract various other parameters, as well as a cuff-type blood pressure system that takes physical blood pressure measurements at one of the patient's feet. Blood pressure can also be calculated/derived from the bioimpedance waveforms. Measured parameters are transmitted wirelessly to facilitate remote monitoring of the patient for heart failure, chronic heart failure, end-stage renal disease, cardiac arrhythmias, and other degenerative diseases.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 6, 2017
    Inventors: Matthew BANET, Marshal Singh DHILLON, Susan Meeks PEDE, Lauren Nicole Miller HAYWARD, Arthur DEPTALA, Jonas Dean COCHRAN
  • Publication number: 20170188877
    Abstract: A stand-on physiological sensor (e.g. floormat) measures vital signs and various hemodynamic parameters, including blood pressure and ECG waveforms. The sensor is similar in configuration to a common bathroom scale and includes electrodes that take electrical measurements from a patient's feet to generate bioimpedance waveforms, which are analyzed digitally to extract various other parameters, as well as a cuff-type blood pressure system that takes physical blood pressure measurements at one of the patient's feet. Blood pressure can also be calculated/derived from the bioimpedance waveforms. Measured parameters are transmitted wirelessly to facilitate remote monitoring of the patient for heart failure, chronic heart failure, end-stage renal disease, cardiac arrhythmias, and other degenerative diseases.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 6, 2017
    Inventors: Matthew BANET, Marshal Singh DHILLON, Susan Meeks PEDE, Lauren Nicole Miller HAYWARD, Arthur DEPTALA, Jonas Dean COCHRAN
  • Publication number: 20170188955
    Abstract: A stand-on physiological sensor (e.g. floormat) measures vital signs and various hemodynamic parameters, including blood pressure and ECG waveforms. The sensor is similar in configuration to a common bathroom scale and includes electrodes that take electrical measurements from a patient's feet to generate bioimpedance waveforms, which are analyzed digitally to extract various other parameters, as well as a cuff-type blood pressure system that takes physical blood pressure measurements at one of the patient's feet. Blood pressure can also be calculated/derived from the bioimpedance waveforms. Measured parameters are transmitted wirelessly to facilitate remote monitoring of the patient for heart failure, chronic heart failure, end-stage renal disease, cardiac arrhythmias, and other degenerative diseases.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 6, 2017
    Inventors: Matthew BANET, Marshal Singh DHILLON, Susan Meeks PEDE, Lauren Nicole Miller HAYWARD, Arthur DEPTALA, Jonas Dean COCHRAN
  • Publication number: 20170188890
    Abstract: The invention described herein is a system that features a Floormat and Handheld Sensor that operate in concert with a user's mobile device. The Floormat resembles a conventional bathroom scale, but features an enhanced set of measurements that include pulse rate and/or heart rate, SpO2, respiratory rate, weight, body composition, and Fluids. The Handheld Sensor features an integrated form factor that fits in a user's hand, which measures parameters such as blood pressure (e.g. systolic, diastolic, mean and pulse pressures), stroke volume, and cardiac output. Measurements of stroke volume and cardiac output require information from the Floormat (e.g., weight and body composition) to be sent to and processed by the Handheld Sensor. The Handheld Sensor can also make redundant measurements of heart rate, SpO2, and respiratory rate. Both systems transmit information through a wireless interface to a web-based system, where a clinician can analyze it to help diagnose a user.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 6, 2017
    Inventors: Matthew BANET, Marshal Singh DHILLON, Susan Meeks PEDE, Lauren Nicole Miller HAYWARD, Arthur DEPTALA, Jonas Dean COCHRAN
  • Publication number: 20170188960
    Abstract: A stand-on physiological sensor (e.g. floormat) measures vital signs and various hemodynamic parameters, including blood pressure and ECG waveforms. The sensor is similar in configuration to a common bathroom scale and includes electrodes that take electrical measurements from a patient's feet to generate bioimpedance waveforms, which are analyzed digitally to extract various other parameters, as well as a cuff-type blood pressure system that takes physical blood pressure measurements at one of the patient's feet. Blood pressure can also be calculated/derived from the bioimpedance waveforms. Measured parameters are transmitted wirelessly to facilitate remote monitoring of the patient for heart failure, chronic heart failure, end-stage renal disease, cardiac arrhythmias, and other degenerative diseases.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 6, 2017
    Inventors: Matthew Banet, Marshal Singh DHILLON, Susan Meeks PEDE, Lauren Nicole Miller HAYWARD, Arthur DEPTALA, Jonas Dean COCHRAN
  • Publication number: 20170188850
    Abstract: The invention provides systems for measuring blood pressure and stroke volume values from a patient. Both systems feature a floormat system and a body-worn sensor working in concert. In aspects, the floormat generates calibrations for both blood pressure and stroke volume measurements. It features a base having a bottom surface configured to rest on or near a substantially horizontal surface, and a top surface configured to receive at least one of the patient's feet. Within the floormat are weight and blood pressure-measuring systems that determine, respectively, the calibrations for stroke volume and blood pressure. Its transmits these parameters to the body-worn sensor, which further processes them, along with other signals, to determine real-time values of blood pressure and stroke volume.
    Type: Application
    Filed: January 5, 2016
    Publication date: July 6, 2017
    Inventors: Matthew BANET, Marshal Singh DHILLON, Susan Meeks PEDE, Lauren Nicole Miller HAYWARD, Arthur DEPTALA, Jonas Dean COCHRAN