Patents by Inventor Laurence D. Delaney

Laurence D. Delaney has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7736747
    Abstract: A method of joining two silicon members and the bonded assembly in which the members are assembled to place them into alignment across a seam. Silicon derived from silicon powder is plasma sprayed across the seam and forms a silicon coating that bonds to the silicon members on each side of the seam to thereby bond together the members. The plasma sprayed silicon may seal an underlying bond of spin-on glass or may act as the primary bond, in which case through mortise holes are preferred so that two layers of silicon are plasma sprayed on opposing ends of the mortise holes. A silicon wafer tower or boat may be the final product. The method may be used to form a ring or a tube from segments or staves arranged in a circle. Plasma spraying silicon may repair a crack or chip formed in a silicon member.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: June 15, 2010
    Assignee: Integrated Materials, Incorporated
    Inventors: James E. Boyle, Laurence D. Delaney
  • Patent number: 7074693
    Abstract: A method of joining two silicon members and the bonded assembly in which the members are assembled to place them into alignment across a seam. Silicon derived from silicon powder is plasma sprayed across the seam and forms a silicon coating that bonds to the silicon members on each side of the seam to thereby bond together the members. The plasma sprayed silicon may seal an underlying bond of spin-on glass or may act as the primary bond, in which case through mortise holes are preferred so that two layers of silicon are plasma sprayed on opposing ends of the mortise holes. A silicon wafer tower or boat may be the final product. The method may be used to form a ring or a tube from segments or staves arranged in a circle. Plasma spraying silicon may repair a crack or chip formed in a silicon member.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: July 11, 2006
    Assignee: Integrated Materials, Inc.
    Inventors: James E. Boyle, Laurence D. Delaney
  • Patent number: 6979659
    Abstract: A process for hydrogen annealing silicon wafers that have been cut from an ingot and polished on both sides, thereby removing crystal originated pits (COPs) in their surface. The wafers are then stacked in a tower having at least support surfaces made from virgin polysilicon, that is, polysilicon form by chemical vapor deposition, preferably from monosilane. The tower may include four virgin polysilicon legs have support teeth slotted at inclined angles along the legs and fixed at their opposed ends to bases. The wafers so supported on the virgin polysilicon towers are annealed in a hydrogen ambient at 1250° C. for 12 hours.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: December 27, 2005
    Assignee: Integrated Materials, Inc.
    Inventors: Raanan Y. Zehavi, James E. Boyle, Laurence D. Delaney
  • Publication number: 20040266158
    Abstract: A method of joining two silicon members and the bonded assembly in which the members are assembled to place them into alignment across a seam. Silicon derived from silicon powder is plasma sprayed across the seam and forms a silicon coating that bonds to the silicon members on each side of the seam to thereby bond together the members. The plasma sprayed silicon may seal an underlying bond of spin-on glass or may act as the primary bond, in which case through mortise holes are preferred so that two layers of silicon are plasma sprayed on opposing ends of the mortise holes. A silicon wafer tower or boat may be the final product. The method may be used to form a ring or a tube from segments or staves arranged in a circle. Plasma spraying silicon may repair a crack or chip formed in a silicon member.
    Type: Application
    Filed: June 24, 2003
    Publication date: December 30, 2004
    Inventors: James E. Boyle, Laurence D. Delaney
  • Publication number: 20040197974
    Abstract: A process for hydrogen annealing silicon wafers that have been cut from an ingot and polished on both sides, thereby removing crystal originated pits (COPs) in their surface. The wafers are then stacked in a tower having at least support surfaces made from virgin polysilicon, that is, polysilicon form by chemical vapor deposition, preferably from monosilane. The tower may include four virgin polysilicon legs have support teeth slotted at inclined angles along the legs and fixed at their opposed ends to bases. The wafers so supported on the virgin polysilicon towers are annealed in a hydrogen ambient at 1250° C. for 12 hours.
    Type: Application
    Filed: April 22, 2004
    Publication date: October 7, 2004
    Inventors: Raanan Y. Zehavi, James E. Boyle, Laurence D. Delaney
  • Patent number: 6727191
    Abstract: A process for hydrogen annealing silicon wafers that have been cut from an ingot and polished on both sides, thereby removing crystal originated pits (COPs) in their surface. The wafers are then stacked in a tower having at least support surfaces made from virgin polysilicon, that is, polysilicon form by chemical vapor deposition, preferably from monosilane. The tower may include four virgin polysilicon legs have support teeth slotted along the legs and fixed at their opposed ends to bases. The wafers are supported at four equally distributed points at 0.707 of the wafer radius. The wafers so supported on the virgin polysilicon towers are annealed in a hydrogen ambient at 1250° C. for 12 hours.
    Type: Grant
    Filed: February 26, 2001
    Date of Patent: April 27, 2004
    Assignee: Integrated Materials, Inc.
    Inventors: Raanan Y. Zehavi, James E. Boyle, Laurence D. Delaney
  • Publication number: 20040040885
    Abstract: A silicon tower for removably supporting a plurality of silicon wafers during thermal processing. A tower includes plural silicon legs secured on their ends to two bases. A plurality of slots are cut in the legs allowing slidable insertion of the wafers and support for them. Preferably, the teeth incline upwardly at 1-3° and have horizontal support areas polished on their ends. Preferably, the legs are machined from virgin polysilicon formed by chemical vapor deposition from silane. The bases may be either virgin poly or monocrystalline silicon and be either integral or composed of multiple parts. Virgin polysilicon is preferably annealed to above 1025° C. before machining. Silicon parts may be joined by applying a spin-on glass between the parts and annealing the assembly.
    Type: Application
    Filed: August 29, 2003
    Publication date: March 4, 2004
    Inventors: James E. Boyle, Robert L. Davis, Laurence D. Delaney, Raanan Y. Zehavi
  • Patent number: 6617225
    Abstract: A method of fabricating parts of silicon, preferably virgin polysilicon formed by chemical vapor deposition of silane, and assembling them into a complex structure, such as a silicon tower or boat for removably supporting a plurality of silicon wafers during thermal processing. The virgin polysilicon is annealed to above 1025° C. before it is machined into a predetermined shape. After machining, the silicon parts are annealed in an oxygen ambient. The machined parts are then assembled and joined together followed by another anneal of the assembled structure. A preferred embodiment of the tower includes four legs secured on their ends to two bases. A plurality of slots are cut in the legs allowing slidable insertion of the wafers and support for them. The bases may be either virgin poly or monocrystalline silicon and be either integral or composed of multiple parts.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: September 9, 2003
    Assignee: Integrated Materials, Inc.
    Inventors: James E. Boyle, Robert L. Davis, Laurence D. Delaney, Raanan Y. Zehavi
  • Publication number: 20030003686
    Abstract: A method of fabricating parts of silicon, preferably virgin polysilicon formed by chemical vapor deposition of silane, and assembling them into a complex structure, such as a silicon tower or boat for removably supporting a plurality of silicon wafers during thermal processing. The virgin polysilicon is annealed to above 1025° C. before it is machined into a predetermined shape. After machining, the silicon parts are annealed in an oxygen ambient. The machined parts are then assembled and joined together followed by another anneal of the assembled structure. A preferred embodiment of the tower includes four legs secured on their ends to two bases. A plurality of slots are cut in the legs allowing slidable insertion of the wafers and support for them. The bases may be either virgin poly or monocrystalline silicon and be either integral or composed of multiple parts.
    Type: Application
    Filed: August 22, 2002
    Publication date: January 2, 2003
    Inventors: James E. Boyle, Robert L. Davis, Laurence D. Delaney, Raanan Y. Zehavi
  • Patent number: 6455395
    Abstract: A method of fabricating the parts and assembling them into a complex structure, such as a silicon tower or boat for removably supporting a plurality of silicon wafers during thermal processing. A preferred embodiment of the tower includes four legs secured on their ends to two bases. A plurality of slots are cut in the legs allowing slidable insertion of the wafers and support for them. The legs preferably have a rounded wedge shape with a curved front surface of small radius cut with the slots and a back surface that is either flat or curved with a substantially larger radius. Preferably, the legs are machined from virgin polysilicon formed by chemical vapor deposition from silane. The bases may be either virgin poly or monocrystalline silicon and be either integral or composed of multiple parts. Virgin polysilicon is preferably annealed to above 1025° C. before machining. Silicon parts may be joined by applying a spin-on glass between the parts and annealing the assembly.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: September 24, 2002
    Assignee: Integrated Materials, Inc.
    Inventors: James E. Boyle, Robert L. Davis, Laurence D. Delaney, Raanan Y. Zehavi
  • Patent number: 6450346
    Abstract: A silicon tower or boat for removably supporting a plurality of silicon wafers during thermal processing. A preferred embodiment of the tower includes four legs secured on their ends to two bases. A plurality of slots are cut in the legs allowing slidable insertion of the wafers and support for them. The legs preferably have a rounded wedge shape with a curved front surface of small radius cut with the slots and a back surface that is either flat or curved with a substantially larger radius. Preferably, the legs are machined from virgin polysilicon formed by chemical vapor deposition from silane. The bases may be either virgin poly or monocrystalline silicon and be either integral or composed of multiple parts. Virgin polysilicon is preferably annealed to above 1025° C. before machining. Silicon parts may be joined by applying a spin-on glass between the parts and annealing the assembly. After assembly, the surface of a tower is subjected to sub-surface working.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: September 17, 2002
    Assignee: Integrated Materials, Inc.
    Inventors: James E. Boyle, Robert L. Davis, Laurence D. Delaney, Raanan Y. Zehavi
  • Publication number: 20020119641
    Abstract: A process for hydrogen annealing silicon wafers that have been cut from an ingot and polished on both sides, thereby removing crystal originated pits (COPs) in their surface. The wafers are then stacked in a tower having at least support surfaces made from virgin polysilicon, that is, polysilicon form by chemical vapor deposition, preferably from monosilane. The tower may include four virgin polysilicon legs have support teeth slotted along the legs and fixed at their opposed ends to bases. The wafers are supported at four equally distributed points at 0.707 of the wafer radius. The wafers so supported on the virgin polysilicon towers are annealed in a hydrogen ambient at 1250° C. for 12 hours.
    Type: Application
    Filed: February 26, 2001
    Publication date: August 29, 2002
    Inventors: Raanan Y. Zehavi, James E. Boyle, Laurence D. Delaney