Patents by Inventor Laurent Poirot

Laurent Poirot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141293
    Abstract: The invention pertains to the field of adaptive cell immunotherapy. It provides with the genetic insertion of exogenous coding sequence(s) that help the immune cells to direct their immune response against infected or malignant cells. These exogenous coding sequences are more particularly inserted under the transcriptional control of endogenous gene promoters that are sensitive to immune cells activation. Such method allows the production of safer immune primary cells of higher therapeutic potential.
    Type: Application
    Filed: December 14, 2023
    Publication date: May 2, 2024
    Inventors: Brian BUSSER, Philippe DUCHATEAU, Alexandre JUILLERAT, Laurent POIROT, Julien VALTON
  • Patent number: 11959091
    Abstract: The present invention relates to methods of developing genetically engineered, preferably non-alloreactive T-cells for immunotherapy. This method involves the use of RNA-guided endonucleases, in particular Cas9/CRISPR system, to specifically target a selection of key genes in T-cells. The engineered T-cells are also intended to express chimeric antigen receptors (CAR) to redirect their immune activity towards malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies using T-Cells for treating cancer and viral infections.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: April 16, 2024
    Assignee: Cellectis
    Inventors: Philippe Duchateau, André Choulika, Laurent Poirot
  • Patent number: 11903968
    Abstract: The invention pertains to the field of adoptive cell immunotherapy. It provides with engineered immune cells comprising genetic alteration into genes which are involved into immune functions downregulation, especially in response to environment signals such as nutrients depletion. Such method allows the production of more potent immune cells in the context of tumors' microenvironment.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: February 20, 2024
    Assignee: CELLECTIS
    Inventors: Philippe Duchateau, Anne-Sophie Gautron, Laurent Poirot, Julien Valton
  • Patent number: 11891614
    Abstract: Methods for developing engineered T-cells for immunotherapy that are both non-alloreactive and resistant to immunosuppressive drugs. The present invention relates to methods for modifying T-cells by inactivating both genes encoding target for an immunosuppressive agent and T-cell receptor, in particular genes encoding CD52 and TCR. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: May 17, 2020
    Date of Patent: February 6, 2024
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Publication number: 20240026376
    Abstract: The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and/or class II major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding B2M and/or CIITA, or by using nucleic acid molecules which inhibit the expression of B2M and/or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component. In addition, expression of immunosuppressive polypeptide can be performed on those modified T-cells in order to prolong the survival of these modified T cells in host organism.
    Type: Application
    Filed: October 4, 2023
    Publication date: January 25, 2024
    Applicant: CELLECTIS
    Inventors: Laurent POIROT, David SOURDIVE, Philippe DUCHATEAU, Jean-Pierre CABANIOLS
  • Patent number: 11873511
    Abstract: The invention pertains to the field of adaptive cell immunotherapy. It provides with the genetic insertion of exogenous coding sequence(s) that help the immune cells to direct their immune response against infected or malignant cells. These exogenous coding sequences are more particularly inserted under the transcriptional control of endogenous gene promoters that are sensitive to immune cells activation. Such method allows the production of safer immune primary cells of higher therapeutic potential.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: January 16, 2024
    Assignee: CELLECTIS
    Inventors: Brian Busser, Philippe Duchateau, Alexandre Juillerat, Laurent Poirot, Julien Valton
  • Patent number: 11820996
    Abstract: The present invention pertains to engineered T-cells, method for their preparation and their use as medicament, particularly for immunotherapy. The engineered T-cells of the invention are characterized in that the expression of beta 2-microglobulin (B2M) and/or class II major histocompatibility complex transactivator (CIITA) is inhibited, e.g., by using rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding B2M and/or CIITA or by using nucleic acid molecules which inhibit the expression of B2M and/or CIITA. In order to further render the T-cell non-alloreactive, at least one gene encoding a component of the T-cell receptor is inactivated, e.g., by using a rare-cutting endonucleases able to selectively inactivating by DNA cleavage the gene encoding said TCR component. In addition, expression of immunosuppressive polypeptide can be performed on those modified T-cells in order to prolong the survival of these modified T cells in host organism.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: November 21, 2023
    Assignee: CELLECTIS
    Inventors: Laurent Poirot, David Sourdive, Philippe Duchateau, Jean-Pierre Cabaniols
  • Publication number: 20230357719
    Abstract: Methods of developing genetically engineered immune cells for immunotherapy, which can be endowed with Chimeric Antigen Receptors targeting an antigen marker that is common to both the pathological cells and said immune cells (ex: CD38, CSI or CD70) by the fact that the genes encoding said markers are inactivated in said immune cells by a rare cutting endonuclease such as TALEN, Cas9 or argonaute.
    Type: Application
    Filed: May 22, 2023
    Publication date: November 9, 2023
    Applicant: Cellectis
    Inventors: Philippe DUCHATEAU, Laurent POIROT
  • Publication number: 20230279440
    Abstract: The present disclosure provides methods to genetically modify cells by insertion of an artificial exon (ArtEx) for delivery of therapeutic proteins in specific cell types and more particularly engineered cells for expression of a transgene into the brain of a patient.
    Type: Application
    Filed: May 6, 2021
    Publication date: September 7, 2023
    Inventors: Alexandre JUILLERAT, Philippe DUCHATEAU, Patrick HONG, Laurent POIROT, Brian BUSSER, Alex BOYNE
  • Publication number: 20230279350
    Abstract: The present invention concerns new engineered immune cells expressing two CARs directed against two different targets, polynucleotides for preparing said immune cells, pharmaceutical compositions comprising said immune cells, and the use of said immune cells in the treatment of cancers.
    Type: Application
    Filed: July 30, 2021
    Publication date: September 7, 2023
    Inventors: André CHOULIKA, Laurent POIROT, Beatriz ARANDA ORGILLES, Philippe DUCHATEAU
  • Publication number: 20230248825
    Abstract: The invention relates to therapeutic compositions for allogeneic cellular therapy comprising TCR deficient T-cells, which are genetically engineered to express immune cell engagers, and methods related thereto.
    Type: Application
    Filed: July 23, 2021
    Publication date: August 10, 2023
    Inventors: Shipra DAS, Sumin JO, Alexandre JUILLERAT, Julien VALTON, Laurent POIROT, Philippe DUCHATEAU
  • Patent number: 11692169
    Abstract: Methods of developing genetically engineered immune cells for immunotherapy, which can be endowed with Chimeric Antigen Receptors targeting an antigen marker that is common to both the pathological cells and said immune cells (ex: CD38, CS1 or CD70) by the fact that the genes encoding said markers are inactivated in said immune cells by a rare cutting endonuclease such as TALEN, Cas9 or argonaute.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: July 4, 2023
    Assignee: CELLECTIS
    Inventors: Philippe Duchateau, Laurent Poirot
  • Publication number: 20230201260
    Abstract: The present invention relates to methods for developing engineered T-cells for immunotherapy that are non-alloreactive. The present invention relates to methods for modifying T-cells by inactivating both genes encoding T-cell receptor and an immune checkpoint gene to unleash the potential of the immune response. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: November 17, 2022
    Publication date: June 29, 2023
    Applicant: CELLECTIS
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cécile SCHIFFER-MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Publication number: 20230138915
    Abstract: The invention relates to the fields of immunotherapy, molecular biology and recombinant nucleic acid technology. In particular, the invention relates to a TALEN-modified human primary cell comprising in its genome, a modified human T cell receptor alpha gene with an insertion comprising at least, from 5? to 3?, a polynucleotide encoding a self-cleaving peptide, a chimeric antigen receptor, wherein the cell has undetectable cell-surface expression of the endogenous alpha beta T cell receptor as compared to a TCR positive control cell and expresses a receptor to target a pathological cell, use of said cell for treating a disease, including cancer. The invention further relates to methods for producing such a TALEN-modified cell, and to means for detecting such an engineered human primary cell or other genetically modified human primary cell obtained using alternative and/or additional rare cutting endonucleases.
    Type: Application
    Filed: October 19, 2017
    Publication date: May 4, 2023
    Inventors: Philippe DUCHATEAU, Brian BUSSER, Alexandre JUILLERAT, Anne-Sophie GAUTRON, Laurent POIROT
  • Patent number: 11603539
    Abstract: Methods for developing engineered T-cells for immunotherapy that are both non-alloreactive and resistant to immunosuppressive drugs. The present invention relates to methods for modifying T-cells by inactivating both genes encoding target for an immunosuppressive agent and T-cell receptor, in particular genes encoding CD52 and TCR. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: March 14, 2023
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnès Gouble, Stéphanie Grosse, Cécile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Publication number: 20230056268
    Abstract: The present invention relates to methods for developing engineered T-cells for immunotherapy and more specifically to methods for modifying T-cells by inactivating at immune checkpoint genes, preferably at least two selected from different pathways, to increase T-cell immune activity This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to highly efficient adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: April 8, 2022
    Publication date: February 23, 2023
    Applicant: CELLECTIS
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cécile SCHIFFER-MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Publication number: 20230050345
    Abstract: The present invention relates to methods for developing engineered T-cells for immunotherapy that are non-alloreactive. The present invention relates to methods for modifying T-cells by inactivating both genes encoding T-cell receptor and an immune checkpoint gene to unleash the potential of the immune response. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: April 7, 2022
    Publication date: February 16, 2023
    Applicant: CELLECTIS
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cécile SCHIFFER-MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Publication number: 20220348955
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: June 24, 2022
    Publication date: November 3, 2022
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 11414674
    Abstract: A method of expanding deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: August 16, 2022
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Publication number: 20220233588
    Abstract: The present invention provides composition kits and methods for treating cancer in a human by immunotherapy using successive doses of CAR-T cells with no or reduced anamnestic immune reaction in one individual (P).
    Type: Application
    Filed: July 2, 2018
    Publication date: July 28, 2022
    Inventors: David SOURDIVE, Aymeric DUCLERT, Mathieu SIMON, Philippe DUCHATEAU, Alan Marc WILLIAMS, Laurent POIROT