Patents by Inventor Laurent Veyre

Laurent Veyre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230264183
    Abstract: Nanoparticles that can be used as hydrosilylation and dehydrogenative silylation catalysts. The nanoparticles have at least one transition metal with an oxidation state of 0, chosen from the metals of columns 8, 9 and 10 of the periodic table, and at least one carbonyl ligand, preferably a silicide.
    Type: Application
    Filed: March 20, 2023
    Publication date: August 24, 2023
    Applicants: ELKEM SILICONES FRANCE SAS, UNIVERSITE CLAUDE BERNARD LYON I, CPE LYON FORMATION CONTINUE ET RECHERCHE - CPE LYON CFR, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - CNRS
    Inventors: Valérie MIELLE, Chloé THIEULEUX, Laurent VEYRE, Iurii SULEIMANOV, Thomas GALEANDRO-DIAMANT, Magali BOUSQUIE
  • Patent number: 11633728
    Abstract: Nanoparticles that can be used as hydrosilylation and dehydrogenative silylation catalysts. The nanoparticles have at least one transition metal with an oxidation state of 0, chosen from the metals of columns 8, 9 and 10 of the periodic table, and at least one carbonyl ligand, preferably a silicide.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: April 25, 2023
    Assignees: ELKEM SILICONES FRANCE SAS, UNIVERSITE CLAUDE BERNARD LYON I, CPE LYON FORMATION CONTINUE ET RECHERCHE—CPE LYON CFR, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE—CNRS
    Inventors: Valerie Meille, Chloe Thieuleux, Laurent Veyre, Iurii Suleimanov, Thomas Galeandro-Diamant, Magali Bousquie
  • Publication number: 20200353454
    Abstract: Nanoparticles that can be used as hydrosilylation and dehydrogenative silylation catalysts. The nanoparticles have at least one transition metal with an oxidation state of 0, chosen from the metals of columns 8, 9 and 10 of the periodic table, and at least one carbonyl ligand, preferably a silicide.
    Type: Application
    Filed: January 11, 2019
    Publication date: November 12, 2020
    Applicants: Elkem Silicones France SAS, Universite Claude Bernard Lyon I, CPE Lyon Formation Continue et Recherche - CPE Lyon FCR, Centre National de la Recherche Scientifique - CNRS
    Inventors: Valerie MEILLE, Chloe THIEULEUX, Laurent VEYRE, Iurii SULEIMANOV, Thomas LEANDRO-DIAMANT, Magali BOUSQUIE
  • Patent number: 8871877
    Abstract: The present invention relates to materials and particularly “organometallic-organic-inorganic hybrid materials” that can be used as heterogeneous catalysts for selective catalytic reactions. More precisely this invention relates to organic-inorganic hybrid nanostructured materials comprising a regularly distributed stabilized carbene that binds strongly to a metal so as to form a stable organometallic-organic-inorganic hybrid material having high catalytic performances.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 28, 2014
    Assignee: Universite Claude Bernard Lyon 1 (UCBL)
    Inventors: Chloe Thieuleux, Christophe Coperet, Laurent Veyre, Robert Corriu, Catherine Reye, Ahmad Mehdi, Jean-Marie Basset, Tarun Maishal, Malika Boualleg, Iyad Karame, Jean-Michel Camus, Johan Alauzun
  • Publication number: 20110257006
    Abstract: The present invention relates to a process for producing a structured porous material comprising a structured inorganic framework made up of metal-oxide based walls in which nanoparticles of metal 0 are incorporated, which comprises the following steps: a) formation of a suspension of hydrophilic nanoparticles of metal 0 stabilized by non-exchangeable ligands that give the nanoparticles their hydrophilic character; b) growth of the inorganic framework from an inorganic precursor around the nanoparticles of metal 0 stabilized by the non-exchangeable hydrophilic ligands, in the presence of a pore-forming agent; and c) elimination of the pore-forming agent and at least partially of the non-exchangeable ligands that give the nanoparticles their hydrophilic character.
    Type: Application
    Filed: September 24, 2009
    Publication date: October 20, 2011
    Applicant: UNIVERSITE CLAUDE BERNARD LYON I
    Inventors: Chloe Thieuleux, Malika Boualleg, Jean-Pierre Candy, Laurent Veyre, Jean-Marie Basset
  • Publication number: 20110160412
    Abstract: The present invention relates to materials and particularly “organometallic-organic-inorganic hybrid materials” that can be used as heterogeneous catalysts for selective catalytic reactions. More precisely this invention relates to organic-inorganic hybrid nanostructured materials comprising a regularly distributed stabilized carbene that binds strongly to a metal so as to form a stable organometallic-organic-inorganic hybrid material having high catalytic performances.
    Type: Application
    Filed: January 23, 2009
    Publication date: June 30, 2011
    Inventors: Chloe Thieuleux, Christophe Coperet, Laurent Veyre, Robert Corriu, Catherine Reye, Ahmad Mehdi, Jean-Marie Basset, Tarun Maishal, Malika Boualleg, Lyad Karame, Jean-Michel Camus, Johan Alauzun