Patents by Inventor Laurie E. Locascio

Laurie E. Locascio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9198645
    Abstract: Methods for the formation of liposomes that encapsulate reagents in a continuous 2-phase flow microfluidic network with precision control of size, for example, from 100 nm to 300 nm, by manipulation of liquid flow rates are described. By creating a solvent-aqueous interfacial region in a microfluidic format that is homogenous and controllable on the length scale of a liposome, fine control of liposome size and polydispersity can be achieved.
    Type: Grant
    Filed: July 21, 2004
    Date of Patent: December 1, 2015
    Assignee: The United States of America, as represented by the Secretary of Commerce of The National Institute of Standards and Technology
    Inventors: Andreas Jahn, Wyatt N. Vreeland, Laurie E. Locascio, Michael Gaitan
  • Patent number: 8715591
    Abstract: An apparatus to create a homogenous liposome population without post-processing using laminar flow/diffusive mixing, and for reducing waste discharge of the therapeutic or compound to be encapsulated and delivered by the liposomes.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: May 6, 2014
    Assignee: The United States of America, as represented by the Secretary of Commerce, the National Institute of Standards and Technology
    Inventors: Michael Gaitan, Andreas Jahn, Laurie E. Locascio, Wyatt Vreeland, Joseph E. Reiner
  • Patent number: 8337783
    Abstract: A magnetic connector assembly for microfluidic devices comprises a first magnetic connector with at least one orifice extending therethrough and a second magnetic connector. The first and second connectors are configured to magnetically attract each other. In one aspect, the first magnetic connector is configured to sealingly engage a surface of a microfluidic chip with the second magnetic connector disposed on an opposite side of the microfluidic chip. The first magnetic connector is configured to seal with the microfluidic chip about a channel opening in the microfluidic chip and provide flow communication between the channel opening and the orifice in the first magnetic connector. In at least one other aspect, the first magnetic connector and second magnetic connector each have at least one orifice and are configured to change a flow communication therebetween upon a rotation of the first or second magnetic connector with respect to the other magnetic connector.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: December 25, 2012
    Assignee: The United States of America as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: Laurie E. Locascio, Francisco Javier Atencia-Fernandez
  • Patent number: 8236480
    Abstract: A method for microfabrication of a microfluidic device having sub-millimeter three dimensional relief structures is disclosed. In this method, homogeneous surfaces, which do not exhibit apparent pixel geometry, emerge from the interaction of the overlapping of diffracted light under opaque pixels and the nonlinear polymerization properties of the photoresist material. The method requires a single photolithographic step and allows for the fabrication of microstructures over large areas (centimeters) with topographic modulation of features smaller than 100 micrometers. The method generates topography that is useful in a broad range of microfluidic applications.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: August 7, 2012
    Assignee: The United States of America, as represented by the Secretary of Commere, the National Institute of Standards and Technology
    Inventors: Laurie E. Locascio, Francisco Javier Atencia-Fernandez, Susan Barnes, Jack F. Douglas
  • Patent number: 8216526
    Abstract: A microfluidic device is described, capable of generating multiple spatial chemical gradients simultaneously inside a microfluidic chamber. The chemical gradients are generated by diffusion, without convection, and can either be maintained constant over long time periods, or modified dynamically. A representative device is described with a circular chamber in which diffusion occurs, with three access ports for the delivery and removal of solutes. A gradient typically forms in minutes, and can be maintained constant indefinitely. Gradients overlapping with different spatial location, and a controlled rotation of a gradient formed by diffusion are demonstrated. The device can also be used to evaluate chemotactic responses of bacteria or other microorganisms in the absence of convective flow.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: July 10, 2012
    Assignee: The United States of America, as represented by the Secretary of Commerce, The National Institute of Standards and Technology
    Inventors: Laurie E. Locascio, Francisco Javier Atencia-Fernandez
  • Publication number: 20100322826
    Abstract: A magnetic connector assembly for microfluidic devices comprises a first magnetic connector with at least one orifice extending therethrough and a second magnetic connector. The first and second connectors are configured to magnetically attract each other. In one aspect, the first magnetic connector is configured to sealingly engage a surface of a microfluidic chip with the second magnetic connector disposed on an opposite side of the microfluidic chip. The first magnetic connector is configured to seal with the microfluidic chip about a channel opening in the microfluidic chip and provide flow communication between the channel opening and the orifice in the first magnetic connector. In at least one other aspect, the first magnetic connector and second magnetic connector each have at least one orifice and are configured to change a flow communication therebetween upon a rotation of the first or second magnetic connector with respect to the other magnetic connector.
    Type: Application
    Filed: June 22, 2010
    Publication date: December 23, 2010
    Applicant: NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
    Inventors: Laurie E. Locascio, Francisco Javier Atencia-Fernandez
  • Patent number: 7658536
    Abstract: Disclosed is an apparatus and method for the mixing of two microfluidic channels wherein several wells are oriented diagonally across the width of a mixing channel. The device effectively mixes the confluent streams with electrokinetic flow, and to a lesser degree, with pressure driven flow. The device and method may be further adapted to split a pair of confluent streams into two or more streams of equal or non-equal concentrations of reactants. Further, under electrokinetic flow, the surfaces of said wells may be specially coated so that the differing electroosmotic mobility between the surfaces of the wells and the surfaces of the channel may increase the mixing efficiency. The device and method are applicable to the steady state mixing as well as the dynamic application of mixing a plug of reagent with a confluent stream.
    Type: Grant
    Filed: April 21, 2008
    Date of Patent: February 9, 2010
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Timothy J. Johnson, David J. Ross, Laurie E. Locascio
  • Publication number: 20090311737
    Abstract: A microfluidic device is described, capable of generating multiple spatial chemical gradients simultaneously inside a microfluidic chamber. The chemical gradients are generated by diffusion, without convection, and can either be maintained constant over long time periods, or modified dynamically. A representative device is described with a circular chamber in which diffusion occurs, with three access ports for the delivery and removal of solutes. A gradient typically forms in minutes, and can be maintained constant indefinitely. Gradients overlapping with different spatial location, and a controlled rotation of a gradient formed by diffusion are demonstrated. The device can also be used to evaluate chemotactic responses of bacteria or other microorganisms in the absence of convective flow.
    Type: Application
    Filed: March 11, 2009
    Publication date: December 17, 2009
    Applicant: Government of the U.S.A. , as represented by the Secretary of Commerce, The National ...
    Inventors: Laurie E. Locascio, Francisco Javier Atencia-Fernandez
  • Publication number: 20090155728
    Abstract: A method for microfabrication of a microfluidic device having sub-millimeter three dimensional relief structures is disclosed. In this method, homogeneous surfaces, which do not exhibit apparent pixel geometry, emerge from the interaction of the overlapping of diffracted light under opaque pixels and the nonlinear polymerization properties of the photoresist material. The method requires a single photolithographic step and allows for the fabrication of microstructures over large areas (centimeters) with topographic modulation of features smaller than 100 micrometers. The method generates topography that is useful in a broad range of microfluidic applications.
    Type: Application
    Filed: May 27, 2008
    Publication date: June 18, 2009
    Inventors: Laurie E. Locascio, Francisco Javier Atencia-Fernandez, Susan Barnes, Jack F. Douglas
  • Publication number: 20080295909
    Abstract: A three dimensional microfluidic device for passive sorting and storing of liquid plugs is provided with homogeneous surfaces from the exposure of a photopolymer through binary masking motifs, i.e., arrays of opaque pixels on a transparency mask. The device includes sub-millimeter three-dimensional relief microstructures to aid in the channeling of fluids. The microstructures have topographically modulated features smaller than 100 micrometers.
    Type: Application
    Filed: May 27, 2008
    Publication date: December 4, 2008
    Inventors: Laurie E. Locascio, Francisco Javier Atencia-Fernandez, Susan Barnes
  • Publication number: 20080190773
    Abstract: Disclosed is an apparatus and method for the mixing of two microfluidic channels wherein several wells are oriented diagonally across the width of a mixing channel. The device effectively mixes the confluent streams with electrokinetic flow, and to a lesser degree, with pressure driven flow. The device and method may be further adapted to split a pair of confluent streams into two or more streams of equal or non-equal concentrations of reactants. Further, under electrokinetic flow, the surfaces of said wells may be specially coated so that the differing electroosmotic mobility between the surfaces of the wells and the surfaces of the channel may increase the mixing efficiency. The device and method are applicable to the steady state mixing as well as the dynamic application of mixing a plug of reagent with a confluent stream.
    Type: Application
    Filed: April 21, 2008
    Publication date: August 14, 2008
    Inventors: Timothy J. Johnson, David J. Ross, Laurie E. Locascio
  • Patent number: 7029561
    Abstract: A method and device are provided for concentrating and separating ionic species in solution within a fluidic device having a fluid conduit such as a channel or capillary. The concentration is achieved by balancing the electrophoretic velocity of an analyte against the bulk flow of solution in the presence of a temperature gradient. Using an appropriate buffer, the temperature gradient can generate a corresponding gradient in the electrophoretic velocity so that the electrophoretic and bulk velocities sum to zero at a unique point and the analyte will be focused at that point. The method and device may be adapted for use with a variety of analytes including fluorescent dyes, amino acids, proteins, DNA and to concentrate a dilute analyte.
    Type: Grant
    Filed: July 18, 2002
    Date of Patent: April 18, 2006
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: David Ross, Laurie E. Locascio
  • Patent number: 6982028
    Abstract: A method is described for modifying performed channels fabricated in a variety of substrate materials including PMMA. The method involves exposing a portion of a fluid flow channel to light at a fluence and wavelength which modifies the surface charge of the substrate at the exposure site. The method can be used to modulate electroosmotic flow in channels or to immobilize chemical compounds or biological species in the fluid flow channels at the modified surfaces.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: January 3, 2006
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Timothy J. Johnson, Emanuel A. Waddell, Jr., David J. Ross, Laurie E. Locascio
  • Patent number: 6907895
    Abstract: Disclosed is an apparatus and method for the mixing of two microfluidic channels wherein several wells are oriented diagonally across the width of a mixing channel. The device effectively mixes the confluent streams with electrokinetic flow, and to a lesser degree, with pressure driven flow. The device and method may be further adapted to split a pair of confluent streams into two or more streams of equal or non-equal concentrations of reactants. Further, under electrokinetic flow, the surfaces of said wells may be specially coated so that the differing electroosmotic mobility between the surfaces of the wells and the surfaces of the channel may increase the mixing efficiency. The device and method are applicable to the steady state mixing as well as the dynamic application of mixing a plug of reagent with a confluent stream.
    Type: Grant
    Filed: July 1, 2002
    Date of Patent: June 21, 2005
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Timothy J. Johnson, David J. Ross, Laurie E. Locascio
  • Patent number: 6860980
    Abstract: A microchannel device is provided with a plastic substrate having a microchannel formed therein. Polyelectrolyte multilayers are disposed along selected surfaces of the microchannel. The polyelectrolyte layers comprise alternating net positively charged layers and net negatively charged layers. A microchannel lid has a surface facing the microchannel. In making the microchannel device, selected surfaces of the microchannel are alternatively exposed to solutions comprising positively charged polyelectrolytes and negatively charged polyelectrolytes to form the desired number of polyelectrolyte layers.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: March 1, 2005
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Laurie E. Locascio, Susan L. R. Barker, David Ross, Michael J. Tarlov
  • Patent number: 6703189
    Abstract: A method for simultaneously forming microstructures in substrates and altering their chemical character. The method involves exposing a surface portion of a substrate to light source, which is strong enough and of the appropriate wavelength to cause ablation of the substrate. The ablation of the substrate is controlled to form microstructures therein, such as channels. The ablation is conducted under a chemical atmosphere, which causes a change in the chemical functionality of the microstructures. The chemical atmosphere can be a gas, liquid or solid that is provided on the substrate surface. The method can be used to fabricate or modify microfluidic systems.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: March 9, 2004
    Assignee: National Institute of Standards and Technology
    Inventors: Emanuel A. Waddell, Jr., Timothy J. Johnson, Gary W. Kramer, Laurie E. Locascio
  • Publication number: 20030051760
    Abstract: Disclosed is an apparatus and method for the mixing of two microfluidic channels wherein several wells are oriented diagonally across the width of a mixing channel. The device effectively mixes the confluent streams with electrokinetic flow, and to a lesser degree, with pressure driven flow. The device and method may be further adapted to split a pair of confluent streams into two or more streams of equal or non-equal concentrations of reactants. Further, under electrokinetic flow, the surfaces of said wells may be specially coated so that the differing electroosmotic mobility between the surfaces of the wells and the surfaces of the channel may increase the mixing efficiency. The device and method are applicable to the steady state mixing as well as the dynamic application of mixing a plug of reagent with a confluent stream.
    Type: Application
    Filed: July 1, 2002
    Publication date: March 20, 2003
    Inventors: Timothy J. Johnson, David J. Ross, Laurie E. Locascio
  • Publication number: 20030019752
    Abstract: A method and device are provided for concentrating and separating ionic species in solution within a fluidic device having a fluid conduit such as a channel or capillary. The concentration is achieved by balancing the electrophoretic velocity of an analyte against the bulk flow of solution in the presence of a temperature gradient. Using an appropriate buffer, the temperature gradient can generate a corresponding gradient in the electrophoretic velocity so that the electrophoretic and bulk velocities sum to zero at a unique point and the analyte will be focused at that point. The method and device may be adapted for use with a variety of analytes including fluorescent dyes, amino acids, proteins, DNA and to concentrate a dilute analyte.
    Type: Application
    Filed: July 18, 2002
    Publication date: January 30, 2003
    Inventors: David Ross, Laurie E. Locascio
  • Publication number: 20020053514
    Abstract: A microchannel device is provided with a plastic substrate having a microchannel formed therein. Polyelectrolyte multilayers are disposed along selected surfaces of the microchannel. The polyelectrolyte layers comprise alternating net positively charged layers and net negatively charged layers. A microchannel lid has a surface facing the microchannel. In making the microchannel device, selected surfaces of the microchannel are alternatively exposed to solutions comprising positively charged polyelectrolytes and negatively charged polyelectrolytes to form the desired number of polyelectrolyte layers.
    Type: Application
    Filed: June 15, 2001
    Publication date: May 9, 2002
    Inventors: Laurie E. Locascio, Susan L. R. Barker, David Ross, Michael J. Tarlov
  • Publication number: 20020023840
    Abstract: A method for modifying and controlling fluid flow in channels formed in substrates. The method involves exposing a portion of a fluid flow channel to light at a fluence which modifies the surface charge of the substrate at the exposure site. The method can be used to immobilize chemical compounds or biological species in the fluid flow channels at the modified surfaces.
    Type: Application
    Filed: July 13, 2001
    Publication date: February 28, 2002
    Inventors: Timothy J. Johnson, Emanuel A. Waddell, Jr., David J. Ross, Laurie E. Locascio