Patents by Inventor Lawrence A. Crum

Lawrence A. Crum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110016671
    Abstract: Systems and methods for treating small elongated fibrous and particles of certain materials, e.g., PTFE materials in a suspension are presented. In some instances, high-intensity ultrasound (or acoustical energy) is applied to a sample of the material, through a fluid coupling medium or suspension, to achieve a material transformation in the sample. In various embodiments, fibrillation of particles of PTFE or similar materials is accomplished, or the formation of extended structures of these materials is caused or enhanced. Also, the ability to separate long fiber samples by ultrasonic or acoustic cavitation action is provided.
    Type: Application
    Filed: June 9, 2010
    Publication date: January 27, 2011
    Applicant: Impulse Devices, Inc.
    Inventors: Dario Felipe GAITAN, Robert Hiller, Lawrence A. Crum
  • Publication number: 20100226555
    Abstract: A tissue specimen imaging device, comprising: a container having an upwardly facing surface, adapted to receive a tissue specimen and a liquid, an ultrasound imaging assembly, adapted to automatically form a three dimensional image of the tissue specimen interior. In one preferred embodiment the device includes a transducer head that is automatically moved relative to the specimen.
    Type: Application
    Filed: March 3, 2010
    Publication date: September 9, 2010
    Inventors: Robert E. Sandstrom, Lawrence A. Crum
  • Publication number: 20100160781
    Abstract: A noninvasive technique that can be used to deny blood flow to a particular region of tissue, without the inherent risks associated with invasive procedures such as surgery and minimally-invasive procedures such as embolization. Blood flow in selected portions of the vasculature can be occluded by selectively treating specific portions of the vasculature with high intensity focused ultrasound (HIFU), where the HIFU is targeted Doppler ultrasound data, and a duration of the therapy is automatically controlled using a negative feedback loop provided by Doppler ultrasound data collected during the HIFU therapy. A portion of the vasculature providing blood flow to the undesired tissue is selected by a clinician, or automatically selected based on Doppler data, and HIFU is administered to the selected portion of the vasculature to occlude blood flow through that portion of the vasculature.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 24, 2010
    Applicant: University of Washington
    Inventors: Stephen Carter, Lawrence Crum, Peter Kaczkowski, John Kucewicz, Mike Bailey, Steve Langer
  • Patent number: 7722539
    Abstract: A noninvasive technique that can be used to deny blood flow to a particular region of tissue, without the inherent risks associated with invasive procedures such as surgery and minimally-invasive procedures such as embolization. Blood flow in selected portions of the vasculature can be occluded by selectively treating specific portions of the vasculature with high intensity focused ultrasound (HIFU). The occlusion denies undesired tissue the nutrients and oxygen provided by blood flow, causing necrosis in the undesired tissue. An imaging technology (such as magnetic resonance imaging, magnetic resonance angiography, ultrasound imaging, Doppler based ultrasound imaging, or computed tomographic angiography) is used to identify the undesired tissue, and the vascular structures associated with the undesired tissue.
    Type: Grant
    Filed: August 18, 2005
    Date of Patent: May 25, 2010
    Assignees: University of Washington, Mirabilis Medica
    Inventors: Stephen J. Carter, Shahram Vaezy, Roy W. Martin, George W. Keilman, Lawrence A. Crum
  • Patent number: 7686763
    Abstract: Ultrasound contrast agents are used to enhance imaging and facilitate HIFU therapy in four different ways. A contrast agent is used: (1) before therapy to locate specific vascular structures for treatment; (2) to determine the focal point of a HIFU therapy transducer while the HIFU therapy transducer is operated at a relatively low power level, so that non-target tissue is not damaged as the HIFU is transducer is properly focused at the target location; (3) to provide a positive feedback mechanism by causing cavitation that generates heat, reducing the level of HIFU energy administered for therapy compared to that required when a contrast agent is not used; and, (4) to shield non-target tissue from damage, by blocking the HIFU energy. Various combinations of these techniques can also be employed in a single therapeutic implementation.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: March 30, 2010
    Assignee: University of Washington
    Inventors: Shahram Vaezy, Roy W. Martin, Stephen J. Carter, Lawrence A. Crum
  • Publication number: 20080199957
    Abstract: Compositions and methods for transport or release of therapeutic and diagnostic agents or metabolites or other analytes from cells, compartments within cells, or through cell layers or barriers are described. The compositions include a membrane barrier transport enhancing agent and are usually administered in combination with an enhancer and/or exposure to stimuli to effect disruption or altered permeability, transport or release. In a preferred embodiment, the compositions include compounds which disrupt endosomal membranes in response to the low pH in the endosomes but which are relatively inactive toward cell membranes, coupled directly or indirectly to a therapeutic or diagnostic agent. Other disruptive agents can also be used, responsive to stimuli and/or enhancers other than pH, such as light, electrical stimuli, electromagnetic stimuli, ultrasound, temperature, or combinations thereof.
    Type: Application
    Filed: April 18, 2008
    Publication date: August 21, 2008
    Applicant: WASHINGTON, UNIVERSITY OF
    Inventors: Allan S. Hoffman, Patrick Stayton, Oliver W. Press, Niren Murthy, Chantal Lackey Reed, Lawrence A. Crum, Pierre D. Mourad, Tyrone M. Porter, David Tirrell
  • Patent number: 7374778
    Abstract: Compositions and methods for transport or release of therapeutic and diagnostic agents or metabolites or other analytes from cells, compartments within cells, or through cell layers or barriers are described. The compositions include a membrane barrier transport enhancing agent and are usually administered in combination with an enhancer and/or exposure to stimuli to effect disruption or altered permeability, transport or release. In a preferred embodiment, the compositions include compounds which disrupt endosomal membranes in response to the low pH in the endosomes but which are relatively inactive toward cell membranes, coupled directly or indirectly to a therapeutic or diagnostic agent. Other disruptive agents can also be used, responsive to stimuli and/or enhancers other than pH, such as light, electrical stimuli, electromagnetic stimuli, ultrasound, temperature, or combinations thereof.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: May 20, 2008
    Assignees: University of Washington, University of Massachusetts
    Inventors: Allan S. Hoffman, Patrick Stayton, Oliver W. Press, Niren Murthy, Chantal Lackey Reed, Lawrence A. Crum, Pierre D. Mourad, Tyrone M. Porter, David Tirrell
  • Publication number: 20070004984
    Abstract: High intensity ultrasound (HIU) is used to facilitate surgical procedures, such as a laparoscopic partial nephrectomy, with minimal bleeding. An apparatus is configured to emit HIU from one or more transducers that are attached to a minimally invasive surgical instrument. Such a tool preferably can provide sufficient clamping pressure to collapse blood vessels' walls, so that they will be sealed by the application of the HIU, and by the resulting thermal ablation and tissue cauterization. Such an instrument can provide feedback to the user that the lesion is completely transmural and that blood flow to the region distal of the line of thermal ablation has ceased. Similar instruments having opposed arms can be configured for use in conventional surgical applications as well. Instruments can be implemented with transducers on only one arm, and an ultrasound reflective material disposed on the other arm.
    Type: Application
    Filed: August 11, 2006
    Publication date: January 4, 2007
    Applicant: University of Washington
    Inventors: Lawrence Crum, Peter Kaczkowski, Stuart Mitchell, Michael Bailey
  • Publication number: 20060052701
    Abstract: A noninvasive technique that can be used to deny blood flow to a particular region of tissue, without the inherent risks associated with invasive procedures such as surgery and minimally-invasive procedures such as embolization. Blood flow in selected portions of the vasculature can be occluded by selectively treating specific portions of the vasculature with high intensity focused ultrasound (HIFU). The occlusion denies undesired tissue the nutrients and oxygen provided by blood flow, causing necrosis in the undesired tissue. An imaging technology (such as magnetic resonance imaging, magnetic resonance angiography, ultrasound imaging, Doppler based ultrasound imaging, or computed tomographic angiography) is used to identify the undesired tissue, and the vascular structures associated with the undesired tissue.
    Type: Application
    Filed: August 18, 2005
    Publication date: March 9, 2006
    Applicant: University of Washington
    Inventors: Stephen Carter, Shahram Vaezy, Roy Martin, George Keilman, Lawrence Crum
  • Publication number: 20050136102
    Abstract: Compositions and methods for transport or release of therapeutic and diagnostic agents or metabolites or other analytes from cells, compartments within cells, or through cell layers or barriers are described. The compositions include a membrane barrier transport enhancing agent and are usually administered in combination with an enhancer and/or exposure to stimuli to effect disruption or altered permeability, transport or release. In a preferred embodiment, the compositions include compounds which disrupt endosomal membranes in response to the low pH in the endosomes but which are relatively inactive toward cell membranes, coupled directly or indirectly to a therapeutic or diagnostic agent. Other disruptive agents can also be used, responsive to stimuli and/or enhancers other than pH, such as light, electrical stimuli, electromagnetic stimuli, ultrasound, temperature, or combinations thereof.
    Type: Application
    Filed: May 28, 2004
    Publication date: June 23, 2005
    Inventors: Allan Hoffman, Patrick Stayton, Oliver Press, Niren Murthy, Chantal Reed, Lawrence Crum, Pierre Mourad, Tyrone Porter
  • Publication number: 20050038340
    Abstract: Ultrasound contrast agents are used to enhance imaging and facilitate HIFU therapy in four different ways. A contrast agent is used: (1) before therapy to locate specific vascular structures for treatment; (2) to determine the focal point of a HIFU therapy transducer while the HIFU therapy transducer is operated at a relatively low power level, so that non-target tissue is not damaged as the HIFU is transducer is properly focused at the target location; (3) to provide a positive feedback mechanism by causing cavitation that generates heat, reducing the level of HIFU energy administered for therapy compared to that required when a contrast agent is not used; and, (4) to shield non-target tissue from damage, by blocking the HIFU energy. Various combinations of these techniques can also be employed in a single therapeutic implementation.
    Type: Application
    Filed: February 2, 2004
    Publication date: February 17, 2005
    Inventors: Shahram Vaezy, Roy Martin, Stephen Carter, Lawrence Crum
  • Patent number: 6835393
    Abstract: Compositions and methods for transport or release of therapeutic and diagnostic agents or metabolites or other analytes from cells, compartments within cells, or through cell layers or barriers are described. The compositions include a membrane barrier transport enhancing agent and are usually administered in combination with an enhancer and/or exposure to stimuli to effect disruption or altered permeability, transport or release. In a preferred embodiment, the compositions include compounds which disrupt endosomal membranes in response to the low pH in the endosomes but which are relatively inactive toward cell membranes, coupled directly or indirectly to a therapeutic or diagnostic agent. Other disruptive agents can also be used, responsive to stimuli and/or enhancers other than pH, such as light, electrical stimuli, electromagnetic stimuli, ultrasound, temperature, or combinations thereof.
    Type: Grant
    Filed: January 5, 1999
    Date of Patent: December 28, 2004
    Assignees: University of Washington, University of Massachusetts
    Inventors: Allan S. Hoffman, Patrick Stayton, Oliver W. Press, David Tirrell, Niren Murthy, Chantal Lackey, Lawrence A. Crum, Pierre D. Mourad, Tyrone M. Porter
  • Patent number: 6716184
    Abstract: Method and apparatus for the simultaneous use of ultrasound on a probe for imaging and therapeutic purposes. The probe limits the effects of undesirable interference noise in a display by synchronizing high intensity focused ultrasound (HIFU) waves with an imaging transducer to cause the noise to be displayed in an area of the image that does not overlap the treatment site. In one embodiment, the HIFU is first energized at a low power level that does not cause tissue damage, so that the focal point of the HIFU can be identified by a change in the echogenicity of the tissue caused by the HIFU. Once the focal point is properly targeted on a desired treatment site, the power level is increased to a therapeutic level. The location of each treatment site is stored and displayed to the user to enable a plurality of spaced-apart treatment sites to be achieved. As the treatment progresses, any changes in the treatment site can be seen in the real time, noise-free image.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: April 6, 2004
    Assignee: University of Washington
    Inventors: Shahram Vaezy, Roy W. Martin, Stephen J. Carter, George W. Keilman, Victor Y. Fujimoto, Lawrence A. Crum
  • Publication number: 20030028111
    Abstract: Method and apparatus for the simultaneous use of ultrasound on a probe for imaging and therapeutic purposes. The probe limits the effects of undesirable interference noise in a display by synchronizing high intensity focused ultrasound (HIFU) waves with an imaging transducer to cause the noise to be displayed in an area of the image that does not overlap the treatment site. In one embodiment, the HIFU is first energized at a low power level that does not cause tissue damage, so that the focal point of the HIFU can be identified by a change in the echogenicity of the tissue caused by the HIFU. Once the focal point is properly targeted on a desired treatment site, the power level is increased to a therapeutic level. The location of each treatment site is stored and displayed to the user to enable a plurality of spaced-apart treatment sites to be achieved. As the treatment progresses, any changes in the treatment site can be seen in the real time, noise-free image.
    Type: Application
    Filed: June 7, 2002
    Publication date: February 6, 2003
    Applicant: The University of Washington
    Inventors: Shahram Vaezy, Roy W. Martin, Stephen J. Carter, George W. Keilman, Victor Y. Fujimoto, Lawrence A. Crum
  • Publication number: 20030018255
    Abstract: Methods and apparatus for enabling substantially bloodless surgery and for stemming hemorrhaging. High intensity focused ultrasound (“HIFU”) is used to form cauterized tissue regions prior to surgical incision, for example, forming a cauterized tissue shell around a tumor to be removed. The procedure is referred to as “presurgical volume cauterization.” In one embodiment, the method is particularly effective for use in surgical lesion removal or resection of tissue having a highly vascularized constitution, such as the liver or spleen, and thus a propensity for hemorrhaging. In further embodiments, methods and apparatus for hemostasis using HIFU is useful in both surgical, presurgical, and medical emergency situations. In an apparatus embodiment, a telescoping, acoustic coupler is provided such that depth of focus of the HIFU energy is controllable. In other embodiments, apparatus characterized by portability are demonstrated, useful for emergency medical situations.
    Type: Application
    Filed: June 13, 2002
    Publication date: January 23, 2003
    Inventors: Roy W. Martin, Lawrence A. Crum, Shahram Vaezy, Stephen J. Carter, W. Scott Helton, Michael Gaps, Peter J. Kaczkowski, Andrew Proctor, George Keilman
  • Patent number: 6485796
    Abstract: Methods for making metal matrix composite articles such as wires and tapes. The metal matrix composites include a plurality of substantially continuous, longitudinally positioned fibers in a metal matrix. The fibers are selected from the group of ceramic fibers, boron, carbon fibers, and mixtures thereof.
    Type: Grant
    Filed: July 14, 2000
    Date of Patent: November 26, 2002
    Assignee: 3M Innovative Properties Company
    Inventors: Michael W. Carpenter, John L. Sinz, Paul S. Werner, Lawrence A. Crum, Herve E. Deve
  • Patent number: 6444217
    Abstract: The present invention provides biomedical devices, such as implantable drug delivery devices that possess a surface layer adapted to retain, and controllably release, drug molecules for administration to a subject. The present invention also provides methods of delivering a drug to a subject, the methods utilizing biomedical devices of the invention.
    Type: Grant
    Filed: April 25, 2001
    Date of Patent: September 3, 2002
    Assignee: University of Washington
    Inventors: Connie Sau-Kuen Kwok, Buddy D. Ratner, Pierre D. Mourad, Lawrence A. Crum
  • Patent number: 6432067
    Abstract: Methods and apparatus for enabling substantially bloodless surgery and for stemming hemorrhaging. High intensity focused ultrasound (“HIFU”) is used to form cauterized tissue regions prior to surgical incision, for example, forming a cauterized tissue shell around a tumor to be removed. The procedure is referred to as “presurgical volume cauterization.” In one embodiment, the method is particularly effective for use in surgical lesion removal or resection of tissue having a highly vascularized constitution, such as the liver or spleen, and thus a propensity for hemorrhaging. In further embodiments, methods and apparatus for hemostasis using HIFU is useful in both surgical, presurgical, and medical emergency situations. In an apparatus embodiment, a telescoping, acoustic coupler is provided such that depth of focus of the HIFU energy is controllable. In other embodiments, apparatus characterized by portability are demonstrated, useful for emergency medical situations.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: August 13, 2002
    Assignees: University of Washington, Sonic Concepts, Inc.
    Inventors: Roy W. Martin, Lawrence A. Crum, Shahram Vaezy, Stephen J. Carter, W. Scott Helton, Michael Gaps, Peter J. Kaczkowski, Andrew Proctor, George Keilman
  • Patent number: 6425867
    Abstract: Method and apparatus for the simultaneous use of ultrasound on a probe for imaging and therapeutic purposes. The probe limits the effects of undesirable interference noise in a display by synchronizing high intensity focused ultrasound (HIFU) waves with an imaging transducer to cause the noise to be displayed in an area of the image that does not overlap the treatment site. In one embodiment, the HIFU is first energized at a low power level that does not cause tissue damage, so that the focal point of the HIFU can be identified by a change in the echogenicity of the tissue caused by the HIFU. Once the focal point is properly targeted on a desired treatment site, the power level is increased to a therapeutic level. The location of each treatment site is stored and displayed to the user to enable a plurality of spaced-apart treatment sites to be achieved. As the treatment progresses, any changes in the treatment site can be seen in the real time, noise-free image.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: July 30, 2002
    Assignee: University of Washington
    Inventors: Shahram Vaezy, Roy W. Martin, Stephen J. Carter, George W. Keilman, Victor Y. Fujimoto, Lawrence A. Crum
  • Patent number: 6315741
    Abstract: Methods and apparatus for enabling substantially bloodless surgery and for stemming hemorrhaging. High intensity focused ultrasound (“HIFU”) is used to form cauterized tissue regions prior to surgical incision, for example, forming a cauterized tissue shell around a tumor to be removed. The procedure is referred to as “presurgical volume cauterization.” In one embodiment, the method is particularly effective for use in surgical lesion removal or resection of tissue having a highly vascularized constitution, such as the liver or spleen, and thus a propensity for hemorrhaging. In further embodiments, methods and apparatus for hemostasis using HIFU is useful in both surgical, presurgical, and medical emergency situations. In an apparatus embodiment, a telescoping, acoustic coupler is provided such that depth of focus of the HIFU energy is controllable. In other embodiments, apparatus characterized by portability are demonstrated, useful for emergency medical situations.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: November 13, 2001
    Inventors: Roy W. Martin, Lawrence A. Crum, Shahram Vaezy, Stephen J. Carter, W. Scott Helton, Michael Gaps, Peter J. Kaczkowski, Andrew Proctor, George Keilman