Patents by Inventor Lawrence A. Kaminsky

Lawrence A. Kaminsky has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8170764
    Abstract: A method to control a powertrain including a transmission, an engine, and an electric machine includes monitoring an input speed, monitoring an output speed, upon initiation of a transmission shift, determining a plurality of input acceleration profiles for controlling the engine and electric machine during the shift, identifying an input acceleration constraint affecting one of the input acceleration profiles, reprofiling the input acceleration profiles based upon the identified input acceleration constraint, and controlling operation of the engine and electric machine based upon the reprofiled input acceleration profiles.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: May 1, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Lawrence A. Kaminsky, Jy-Jen F. Sah
  • Patent number: 8155814
    Abstract: A vehicle includes a powertrain system and a friction braking system, the powertrain system including a hybrid transmission operative in one of a fixed gear operating range state and a continuously variable operating range state to transmit torque between an input member and a torque machine and an output member coupled to a driveline.
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: April 10, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesekkschaft
    Inventors: Goro Tamai, Thomas S. Miller, Scott J Thompson, Lawrence A. Kaminsky, Jy-Jen F. Sah, Anthony H. Heap
  • Publication number: 20120065855
    Abstract: A system includes a friction element having a driving mechanism and a driven mechanism. At least one of the driving mechanism and the driven mechanism is configured to rotate. A drive unit is configured to provide a torque to at least one of the driving mechanism and the driven mechanism. A control processor is configured to diagnose a friction element failure based on a slip speed, which is the difference between rotational speeds of the driving mechanism and the driven mechanism. The control processor is further configured to induce a slip condition as part of a shift process and diagnose the friction element failure if the derived slip speed is substantially zero after inducing the slip condition.
    Type: Application
    Filed: January 27, 2011
    Publication date: March 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Syed Naqi, Ali K. Naqvi, Lawrence A. Kaminsky, Jy-Jen F. Sah, James R. Bartshe, Peter E. Wu
  • Publication number: 20120065838
    Abstract: A method includes receiving speed constraints associated with two independent vehicle components and receiving speed constraints associated with a first dependent vehicle component and a second dependent vehicle component. The method further includes defining a relationship between the received speed constraints of the independent vehicle components and the first and second dependent vehicle components. Moreover, speed values of an unknown speed constraint associated with a third dependent component are derived based on the defined relationship between the received speed constraints of the independent vehicle components and the first and second dependent vehicle components.
    Type: Application
    Filed: February 10, 2011
    Publication date: March 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Pinaki Gupta, Lawrence A. Kaminsky, Anthony H. Heap
  • Patent number: 8099219
    Abstract: A hybrid powertrain system includes a transmission operative in a plurality of operating range states. An operating range state can be secured, including assigning each operating range state to a group that can be verified, monitoring a transition path from a first to a second operating range state, and monitoring a torque equation for the present operating range state.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: January 17, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Hanne Buur, Lawrence A. Kaminsky
  • Patent number: 8092339
    Abstract: A method for controlling a powertrain includes operating a transmission in a neutral operating range state, monitoring commands affecting an input speed, monitoring a tracked clutch slip speed, determining constraints on an input acceleration based upon the commands, determining a clutch slip acceleration profile based upon the constraints on the input acceleration, determining an input acceleration profile based upon the clutch slip acceleration profile, and controlling the powertrain based upon the clutch slip acceleration profile and the input acceleration profile.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: January 10, 2012
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Lawrence A. Kaminsky, Jy-Jen F. Sah, Kristin L Day
  • Patent number: 8079933
    Abstract: A method to control a powertrain including a transmission, an engine, and an electric machine includes monitoring a rotational speed of the engine, monitoring a temperature of a transmission fluid, determining a maximum hydraulic pressure within a hydraulic control system based upon the rotational speed of the engine and the temperature of the transmission fluid, determining a predicted clutch torque capacity based upon the maximum hydraulic pressure, generating a preferred input torque from the engine based upon the predicted clutch torque capacity, and utilizing the preferred input torque to control the engine.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: December 20, 2011
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Lawrence A. Kaminsky, Anthony H. Heap, Jy-Jen F. Sah
  • Patent number: 8068948
    Abstract: A method of performing shifts includes determining whether a multiple-shift maneuver is needed, whether a single-staged input profile is needed, and creating the single-staged input speed profile. The profile is matched to first or second multiple-shift patterns, neither of which utilizes fixed-gear propulsion. The patterns utilize a quasi-asynchronous transitional shift event and an electric torque converter transitional shift event. The quasi-asynchronous event induces controlled slip to an offgoing clutch while providing reaction torque from the electric machines, and offloads torque from the offgoing clutch proportionally to reaction torque. The oncoming clutch begins slipping-engagement prior to completing offloading of the offgoing clutch. At least one of the offgoing and oncoming clutches has non-zero slip speed throughout the quasi-asynchronous event.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: November 29, 2011
    Assignee: GM Global Technology Operations LLC
    Inventors: Jy-Jen F. Sah, Lawrence A. Kaminsky
  • Patent number: 8000866
    Abstract: An engine is coupled to an input member of a hybrid transmission, the hybrid transmission operative to transfer power between the engine and a second torque machine and an output member. A method for controlling the engine includes monitoring an operator torque request, commanding operation of the hybrid transmission in a continuously variable operating range state, determining engine commands comprising a first engine torque request and a second engine torque request based upon the operator torque request and the operation of the hybrid transmission, determining an engine torque constraint comprising a maximum engine torque based upon a capacity of the hybrid transmission to react the engine torque, and controlling engine operation based upon the first engine torque request only when the second engine torque request exceeds the engine torque constraint.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: August 16, 2011
    Assignees: GM Global Technology Operations LLC, Daimler AG, Chrysler LLC, Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Jy-Jen F. Sah, Lawrence A. Kaminsky
  • Publication number: 20110098152
    Abstract: A method of clutch control includes engaging a first holding clutch to place the transmission in a first neutral mode and predicting a first EVT mode. The method begins tracking a first output clutch and predicts a second EVT mode. Tracking the first output clutch ends and tracking a second holding clutch begins. The method engages the second holding clutch to place the transmission in a second neutral mode, ending tracking of the second holding clutch. The first holding clutch is disengaged to place the transmission in a third neutral mode and the method begins tracking a second output clutch. Engaging the second output clutch places the transmission in the second EVT mode and ends tracking of the second output clutch. The engine may be placed into a speed control mode and the transmission placed into a full hydraulic neutral mode.
    Type: Application
    Filed: October 23, 2009
    Publication date: April 28, 2011
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jy-Jen F. Sah, Lawrence A. Kaminsky
  • Publication number: 20100305791
    Abstract: A method of performing shifts includes determining whether a multiple-shift maneuver is needed, whether a single-staged input profile is needed, and creating the single-staged input speed profile. The profile is matched to first or second multiple-shift patterns, neither of which utilizes fixed-gear propulsion. The patterns utilize a quasi-asynchronous transitional shift event and an electric torque converter transitional shift event. The quasi-asynchronous event induces controlled slip to an offgoing clutch while providing reaction torque from the electric machines, and offloads torque from the offgoing clutch proportionally to reaction torque. The oncoming clutch begins slipping-engagement prior to completing offloading of the offgoing clutch. At least one of the offgoing and oncoming clutches has non-zero slip speed throughout the quasi-asynchronous event.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Jy-Jen F. Sah, Lawrence A. Kaminsky
  • Publication number: 20090118932
    Abstract: An engine is coupled to an input member of a hybrid transmission, the hybrid transmission operative to transfer power between the engine and a second torque machine and an output member. A method for controlling the engine includes monitoring an operator torque request, commanding operation of the hybrid transmission in a continuously variable operating range state, determining engine commands comprising a first engine torque request and a second engine torque request based upon the operator torque request and the operation of the hybrid transmission, determining an engine torque constraint comprising a maximum engine torque based upon a capacity of the hybrid transmission to react the engine torque, and controlling engine operation based upon the first engine torque request only when the second engine torque request exceeds the engine torque constraint.
    Type: Application
    Filed: October 14, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Jy-Jen F. Sah, Lawrence A. Kaminsky
  • Publication number: 20090118083
    Abstract: A method to control a powertrain including a transmission, an engine, and an electric machine includes monitoring a rotational speed of the engine, monitoring a temperature of a transmission fluid, determining a maximum hydraulic pressure within a hydraulic control system based upon the rotational speed of the engine and the temperature of the transmission fluid, determining a predicted clutch torque capacity based upon the maximum hydraulic pressure, generating a preferred input torque from the engine based upon the predicted clutch torque capacity, and utilizing the preferred input torque to control the engine.
    Type: Application
    Filed: October 13, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Lawrence A. Kaminsky, Anthony H. Heap, Jy-Jen F. Sah
  • Publication number: 20090118931
    Abstract: A method to control a powertrain including a transmission, an engine, and an electric machine includes monitoring an input speed, monitoring an output speed, upon initiation of a transmission shift, determining a plurality of input acceleration profiles for controlling the engine and electric machine during the shift, identifying an input acceleration constraint affecting one of the input acceleration profiles, reprofiling the input acceleration profiles based upon the identified input acceleration constraint, and controlling operation of the engine and electric machine based upon the reprofiled input acceleration profiles.
    Type: Application
    Filed: October 13, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Lawrence A. Kaminsky, Jy-Jen F. Sah
  • Publication number: 20090118936
    Abstract: A powertrain includes an electromechanical transmission mechanically-operatively coupled to an internal combustion engine and an electric machine adapted to selectively transmit mechanical power to an output member through selective application of a plurality of clutches. A method for controlling the powertrain includes commanding a shift from a fixed gear operating range state to a second operating range state, commanding decreased reactive torque through an off-going clutch during a torque phase of said commanded shift, and decreasing said reactive torque through said off-going clutch through control of engine input torque.
    Type: Application
    Filed: October 16, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Jy-Jen F. Sah, Lawrence A. Kaminsky
  • Publication number: 20090118949
    Abstract: A method for controlling a powertrain includes monitoring a desired synchronous transmission shift during deceleration of an output member including a desired operating range state, monitoring an output speed, predicting output deceleration through the desired synchronous transmission shift, determining a penalty cost associated with the desired synchronous transmission shift based upon an input speed profile resulting from the predicted output deceleration and from the desired synchronous transmission shift, and executing the synchronous transmission shift based upon the penalty cost.
    Type: Application
    Filed: October 3, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Lawrence A. Kaminsky, Jy-Jen F. Sah, Kee Yong Kim
  • Publication number: 20090118886
    Abstract: A vehicle includes a powertrain system and a friction braking system, the powertrain system including a hybrid transmission operative in one of a fixed gear operating range state and a continuously variable operating range state to transmit torque between an input member and a torque machine and an output member coupled to a driveline.
    Type: Application
    Filed: October 24, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Goro Tamai, Thomas S. Miller, Scott J. Thompson, Lawrence A. Kaminsky, Jy-Jen F. Sah, Anthony H. Heap
  • Publication number: 20090118082
    Abstract: A method for controlling a powertrain includes operating a transmission in a neutral operating range state, monitoring commands affecting an input speed, monitoring a tracked clutch slip speed, determining constraints on an input acceleration based upon the commands, determining a clutch slip acceleration profile based upon the constraints on the input acceleration, determining an input acceleration profile based upon the clutch slip acceleration profile, and controlling the powertrain based upon the clutch slip acceleration profile and the input acceleration profile.
    Type: Application
    Filed: October 13, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Lawrence A. Kaminsky, Jy-Jen F. Sah, Kristin L. Day
  • Publication number: 20090118930
    Abstract: A method for controlling a powertrain system including a transmission mechanically coupled to an engine and an electric machine to transfer power to an output member, the transmission selectively operative in one of a plurality of operating range states includes monitoring operator inputs to an accelerator pedal, determining a preferred operating point of the powertrain based upon the operator inputs, determining a preferred operating range state of the transmission based upon the preferred operating point, determining lead control signals for the engine and the transmission based upon the preferred operating point and the preferred operating range state of the transmission, determining immediate control signals for the electric machine and the transmission, wherein the immediate control signals are based upon a lead period calibrated to a difference in control signal reaction times of the engine and the electric machine in order to effect changes to an actual electric machine output substantially simultaneou
    Type: Application
    Filed: October 13, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimler AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Lawrence A. Kaminsky, Jy-Jen F. Sah
  • Publication number: 20090118915
    Abstract: A powertrain includes an electro-mechanical transmission mechanically-operatively coupled to an internal combustion engine and an electric machine adapted to selectively transmit mechanical power to an output member. A method for controlling the powertrain includes operating the transmission in an operating range state wherein input speed can operate independent of output speed and wherein a reactive torque is transmitted through the transmission. The method further includes monitoring commands affecting a requested output torque, monitoring a calculated output torque, and prioritizing between an input acceleration of the transmission and an output torque of the transmission based upon whether operating the transmission in the operating range state is in transient operation or stable operation.
    Type: Application
    Filed: October 21, 2008
    Publication date: May 7, 2009
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Daimier AG, Chrysler LLC, Bayerishe Motoren Werke Aktiengesellschaft
    Inventors: Anthony H. Heap, Lawrence A. Kaminsky, Jy-Jen F. Sah