Patents by Inventor Lawrence C. West
Lawrence C. West has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12289413Abstract: The present disclosure provides techniques and apparatus for capturing an image of a person's retina fundus, identifying the person, accessing various electronic records (including health records) or accounts or devices associated with the person, determining the person's predisposition to certain diseases, and/or diagnosing health issues of the person. Some embodiments provide imaging apparatus having one or more imaging devices for capturing one or more images of a person's eye(s). Imaging apparatus described herein may include electronics for analyzing and/or exchanging captured image and/or health data with other devices. In accordance with various embodiments, imaging apparatus described herein may be alternatively or additionally configured for biometric identification and/or health status determination techniques, as described herein.Type: GrantFiled: December 12, 2019Date of Patent: April 29, 2025Assignee: Tesseract Health, Inc.Inventors: Lawrence C. West, Maurizio Arienzo, Owen Kaye-Kauderer, Tyler S. Ralston, Benjamin Rosenbluth, Jonathan M. Rothberg, Jacob Coumans, Christopher Thomas McNulty
-
Patent number: 12259323Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.Type: GrantFiled: July 11, 2022Date of Patent: March 25, 2025Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
-
Patent number: 12259324Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.Type: GrantFiled: July 20, 2023Date of Patent: March 25, 2025Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
-
Patent number: 12163888Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.Type: GrantFiled: February 18, 2022Date of Patent: December 10, 2024Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Benjamin Cipriany, Jack Jewell, Lawrence C. West, Michael Ferrigno, Paul E. Glenn, Adam Ezra Cohen, Anthony Bellofiore
-
Publication number: 20240369482Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes at least one waveguide configured to propagate excitation energy to the sample wells from a region of the integrated device configured to couple with an excitation energy source. A pixel may also include at least one element for directing the emission energy towards a sensor within the pixel. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.Type: ApplicationFiled: March 12, 2024Publication date: November 7, 2024Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Lawrence C. West, Keith G. Fife, Benjamin Cipriany, Farshid Ghasemi
-
Publication number: 20240321008Abstract: The present disclosure provides techniques and apparatus for capturing an image of a person's retina fundus, identifying the person, accessing various electronic records (including health records) or accounts or devices associated with the person, determining the person's predisposition to certain diseases, and/or diagnosing health issues of the person. Some embodiments provide imaging apparatus having one or more imaging devices for capturing one or more images of a person's eye(s). Imaging apparatus described herein may include electronics for analyzing and/or exchanging captured image and/or health data with other devices. In accordance with various embodiments, imaging apparatus described herein may be alternatively or additionally configured for biometric identification and/or health status determination techniques, as described herein.Type: ApplicationFiled: May 29, 2024Publication date: September 26, 2024Inventors: Marco Maetzler, Lawrence C. West, Maurizio Arienzo, Owen Kaye-Kauderer, Tyler S. Ralston, Benjamin Rosenbluth, Jonathan M. Rothberg, Jacob Coumans, Christopher Thomas McNulty
-
Publication number: 20240248034Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.Type: ApplicationFiled: November 22, 2023Publication date: July 25, 2024Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Paul E. Glenn, Lawrence C. West, Benjamin Cipriany, Keith G. Fife
-
Patent number: 11959853Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device includes multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes at least one waveguide configured to propagate excitation energy to the sample wells from a region of the integrated device configured to couple with an excitation energy source. A pixel may also include at least one element for directing the emission energy towards a sensor within the pixel. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.Type: GrantFiled: October 8, 2021Date of Patent: April 16, 2024Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Lawrence C. West, Keith G. Fife, Benjamin Cipriany, Farshid Ghasemi
-
Publication number: 20240079843Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.Type: ApplicationFiled: November 8, 2023Publication date: March 7, 2024Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
-
Patent number: 11879841Abstract: Apparatus and methods for analyzing single molecule and performing nucleic acid sequencing. An apparatus can include an assay chip that includes multiple pixels with sample wells configured to receive a sample, which, when excited, emits emission energy; at least one element for directing the emission energy in a particular direction; and a light path along which the emission energy travels from the sample well toward a sensor. The apparatus also includes an instrument that interfaces with the assay chip. The instrument includes an excitation light source for exciting the sample in each sample well; a plurality of sensors corresponding the sample wells. Each sensor may detect emission energy from a sample in a respective sample well. The instrument includes at least one optical element that directs the emission energy from each sample well towards a respective sensor of the plurality of sensors.Type: GrantFiled: October 8, 2021Date of Patent: January 23, 2024Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Jason W. Sickler, Brett J. Gyarfas, Jeremy Lackey, Gerard Schmid, Paul E. Glenn, Lawrence C. West, Benjamin Cipriany, Keith G. Fife
-
Patent number: 11848531Abstract: Apparatus and methods for producing ultrashort optical pulses are described. A high-power, solid-state, passively mode-locked laser can be manufactured in a compact module that can be incorporated into a portable instrument. The mode-locked laser can produce sub-50-ps optical pulses at a repetition rates between 200 MHz and 50 MHz, rates suitable for massively parallel data-acquisition. The optical pulses can be used to generate a reference clock signal for synchronizing data-acquisition and signal-processing electronics of the portable instrument.Type: GrantFiled: March 16, 2022Date of Patent: December 19, 2023Assignee: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Jason W. Sickler, Lawrence C. West, Faisal R. Ahmad, Paul E. Glenn, Jack Jewell, John Glenn, Jose Camara, Jeremy Christopher Jordan, Todd Rearick, Farshid Ghasemi, Jonathan C. Schultz, Keith G. Fife, Benjamin Cipriany
-
Publication number: 20230375475Abstract: System and methods for analyzing single molecules and performing nucleic acid sequencing. An integrated device may include multiple pixels with sample wells configured to receive a sample, which when excited, emits radiation. The integrated device includes a surface having a trench region recessed from a portion of the surface and an array of sample wells, disposed in the trench region. The integrated device also includes a waveguide configured to couple excitation energy to at least one sample well in the array and positioned at a first distance from a surface of the trench region and at a second distance from the surface in a region separate from the trench region. The first distance is smaller than the second distance. The system also includes an instrument that interfaces with the integrated device. The instrument may include an excitation energy source for providing excitation energy to the integrated device by coupling to an excitation energy coupling region of the integrated device.Type: ApplicationFiled: July 20, 2023Publication date: November 23, 2023Applicant: Quantum-Si IncorporatedInventors: Jonathan M. Rothberg, Ali Kabiri, Gerard Schmid, Keith G. Fife, James Beach, Jason W. Sickler, Lawrence C. West, Paul E. Glenn, Kyle Preston, Farshid Ghasemi, Benjamin Cipriany, Jeremy Lackey
-
Publication number: 20230374586Abstract: The disclosure relates, in part, to a method for detecting an analyte in a sample, comprising: contacting a substrate construct with a sample that may comprise the analyte, and using evanescent wave imaging to detect the analyte.Type: ApplicationFiled: April 28, 2023Publication date: November 23, 2023Applicant: 454 CorporationInventors: Jonathan M. Rothberg, Isaac Bean, William A. Hansen, Jose Camara, Lawrence C. West, Henry Kemble, Lindsay Schneider, David Honeybun, Jaime Scott Zahorian
-
Publication number: 20230364618Abstract: The disclosure is directed to an imaging device comprising: a reservoir having an interior lower surface; a substrate arranged below the reservoir, wherein at least a portion of an upper surface of the substrate forms the interior lower surface of the reservoir; a first light source arranged proximate to the substrate and configured to direct light into the substrate; an image sensor arranged below the substrate and configured to receive emission light produced within the reservoir.Type: ApplicationFiled: April 28, 2023Publication date: November 16, 2023Applicant: 454 CorporationInventors: Jonathan M. Rothberg, Isaac Bean, William A. Hansen, Jose Camara, Lawrence C. West, Henry Kemble, Lindsay Schneider, David Honeybun, Jaime Scott Zahorian
-
Publication number: 20230366026Abstract: The disclosure is directed to (i) controlling a first light source to emit a first light into a substrate on which substrate polynucleotides are immobilized, wherein a plurality of substrate polynucleotides are each annealed to a sequencing primer and bound with a polymerase, wherein the substrate polynucleotides are in a presence of a pool of protected nucleotides, and wherein each protected nucleotide comprises a detectable moiety and a photocleavable terminating moiety; (ii) processing a fluorescence signal to identify protected nucleotides incorporated in the sequencing primers; (iii) controlling a second light source to emit a second light into the substrate to cleave the detectable moieties from the incorporated protected nucleotides; (iv) determining one of both of: a percentage of the sequencing primers that incorporated a protected nucleotide and a percentage of the detectable moieties cleaved from the incorporated protected nucleotides; and (v) modifying one or more parameters of a sequencing primerType: ApplicationFiled: April 28, 2023Publication date: November 16, 2023Applicant: 454 CorporationInventors: Jonathan M. Rothberg, Isaac Bean, William A. Hansen, Jose Camara, Lawrence C. West, Henry Kemble, Lindsay Schneider, David Honeybun, Jaime Scott Zahorian
-
Publication number: 20230366025Abstract: The disclosure is directed to a method for nucleic acid sequencing, comprising: contacting a substrate polynucleotide immobilized to a substrate with a protected nucleotide and a sequencing primer in a presence of a polymerase such that the polymerase incorporates the protected nucleotide into the sequencing primer, wherein the protected nucleotide comprises a detectable moiety and a photocleavable terminating moiety; using evanescent wave imaging to identify the protected nucleotide incorporated into the sequencing primer; and using evanescent wave imaging to cleave the photocleavable terminating moiety of the protected nucleotide.Type: ApplicationFiled: April 28, 2023Publication date: November 16, 2023Applicant: 454 CorporationInventors: Jonathan M. Rothberg, Isaac Bean, William A. Hansen, Jose Camara, Lawrence C. West, Henry Kemble, Lindsay Schneider, David Honeybun, Jaime Scott Zahorian
-
Publication number: 20230366822Abstract: The disclosure is directed to a method for preparing a sample for evanescent wave imaging, comprising: isothermally amplifying a target nucleic acid present in the sample in a reservoir to produce one or more amplicons, wherein the one or more amplicons are immobilized to a bottom surface of the reservoir; and contacting the one or more amplicons with an aqueous solution comprising sequencing reagents comprising a pool of 3?-unblocked protected nucleotides.Type: ApplicationFiled: April 28, 2023Publication date: November 16, 2023Applicant: 454 CorporationInventors: Jonathan M. Rothberg, Isaac Bean, William A. Hansen, Jose Camara, Lawrence C. West, Henry Kemble, Lindsay Schneider, David Honeybun, Jaime Scott Zahorian
-
Publication number: 20230365612Abstract: The disclosure is directed to a compound of formula III: wherein: X is a heteroatom; Base is a nucleobase; R1 and R2 are each independently selected from the group consisting of H, CF3, CN, a C1-C12 straight chain or branched alkyl, a C2-C12 straight chain or branched alkenyl or polyenyl, a C2-C12 straight chain or branched alkynyl or polyalkynyl, a C1-C12 ether, and an aromatic group (e.g., a phenyl, a naphthyl, a pyridine), with the proviso that at least one of R1 and R2 is CF3, CN, a C1-C12 straight chain or branched alkyl, a C2-C12 straight chain or branched alkenyl or polyenyl, a C2-C12 straight chain or branched alkynyl or polyalkynyl, a C1-C12 ether, or an aromatic group (e.g., a phenyl, a naphthyl, a pyridine); R3 is NO2; R4 is H; R5 comprises a C1-C12 alkyne, an amide, and/or an amine; R6 is OMe or S—C6H6; and R7 is H or NO2.Type: ApplicationFiled: April 28, 2023Publication date: November 16, 2023Applicant: 454 CorporationInventors: Jonathan M. Rothberg, Isaac Bean, William A. Hansen, Jose Camara, Lawrence C. West, Henry Kemble, Lindsay Schneider, David Honeybun, Jaime Scott Zahorian
-
Publication number: 20230366019Abstract: The disclosure is directed to a method for nucleic acid sequencing, comprising: using evanescent wave imaging to identify a 3?-unblocked protected nucleotide incorporated into a sequencing primer.Type: ApplicationFiled: April 28, 2023Publication date: November 16, 2023Applicant: 454 CorporationInventors: Jonathan M. Rothberg, Isaac Bean, William A. Hansen, Jose Camara, Lawrence C. West, Henry Kemble, Lindsay Schneider, David Honeybun, Jaime Scott Zahorian
-
Patent number: 11737665Abstract: Aspects of the present disclosure provide improved techniques for imaging a subject's retina fundus. Some aspects relate to an imaging apparatus that may be substantially binocular shaped and/or may house multiple imaging devices configured to provide multiple corresponding modes of imaging the subject's retina fundus. Some aspects relate to techniques for imaging a subject's eye using white light, fluorescence, infrared (IR), optical coherence tomography (OCT), and/or other imaging modalities that may be employed by a single imaging apparatus. Some aspects relate to improvements in white light, fluorescence, IR, OCT, and/or other imaging technologies that may be employed alone or in combination with other techniques. Some aspects relate to multi-modal imaging techniques that enable determination of a subject's health status.Type: GrantFiled: June 19, 2020Date of Patent: August 29, 2023Assignee: Tesseract Health, Inc.Inventors: Tyler S. Ralston, Maurizio Arienzo, Owen Kaye-Kauderer, Benjamin Rosenbluth, Jonathan M. Rothberg, Lawrence C. West, Paul E. Glenn