Patents by Inventor Lawrence F. McHugh

Lawrence F. McHugh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9725784
    Abstract: Copper is produced by a looping oxidizing process wherein oxidation of copper sulfide concentrate to molten blister copper by conversion with copper oxides (and optionally oxygen from air) in a one step, molten bath operation to produce molten blister copper, iron oxide slag, and rich SO2 off gas. The blister copper is treated in an anode furnace to reduce the iron content and oxidize residual sulfur, and prepare it for either electrolysis or reoxidation.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: August 8, 2017
    Inventors: Lawrence F. McHugh, Leonid N Shekhter, Joseph D. Lessard, Daniel G. Gribbin, Esra Cankaya-Yalcin
  • Patent number: 9322081
    Abstract: Recovery of a metal from scrap materials or other source materials containing two or more metals or other materials by iodization of the materials or parts of them to create multiple metal iodides of respective metals, separating the iodides and dissociating at least one of the iodides to recover its metal component.
    Type: Grant
    Filed: July 3, 2012
    Date of Patent: April 26, 2016
    Assignee: Orchard Material Technology, LLC
    Inventors: Lawrence F. McHugh, Leonid N. Shekhter, Yuri V. Blagoveshchenskiy
  • Publication number: 20130340568
    Abstract: Copper is produced by a looping oxidizing process wherein oxidation of copper sulfide concentrate to molten blister copper by conversion with copper oxides (and optionally oxygen from air) in a one step, molten bath operation to produce molten blister copper, iron oxide slag, and rich SO2 off gas. The blister copper is treated in an anode furnace to reduce the iron content and oxidize residual sulfur, and prepare it for either electrolysis or reoxidation.
    Type: Application
    Filed: June 20, 2013
    Publication date: December 26, 2013
    Applicant: ORCHARD MATERIAL TECHNOLOGY
    Inventors: Lawrence F. McHugh, Leonid N. Shekhter, Joseph D. Lessard, Daniel G. Gribbin, Esra Cankaya-Yalcin
  • Publication number: 20130243673
    Abstract: Disclosed is process for the separation of tungsten from molybdenum and more particularly from ammonium molybdate solutions. The method comprises dissolving technical grade molybdenum trioxide in an aqueous ammonium hydroxide solution and further adding certain metal generating compounds to the aqueous solution thereby generating a tungsten-containing precipitate. Calcium, iron and manganese are the preferred metal generating compounds of the invention. Certain temperature and pH values of the system, as disclosed, are preferred for the precipitation of the tungsten from the ammonia molybdate solution.
    Type: Application
    Filed: February 7, 2011
    Publication date: September 19, 2013
    Applicant: Orchard Material Technology, LLC
    Inventors: Leonid N. Shekhter, John E. Litz, Xiong Wei, Lawrence F. McHugh
  • Publication number: 20130155581
    Abstract: Recovery of a metal from scrap materials or other source materials containing two or more metals or other materials by iodization of the materials or parts of them to create multiple metal iodides of respective metals, separating the iodides and dissociating at least one of the iodides to recover its metal component.
    Type: Application
    Filed: July 3, 2012
    Publication date: June 20, 2013
    Applicant: ORCHARD MATERIAL TECHNOLOGY LLC
    Inventors: Lawrence F. McHugh, Leonid N. Shekhter, Yuri V. Blagoveshchenskiy
  • Publication number: 20120034154
    Abstract: Utilization of process and equipment for oxidation of metal sulfides, preferably two step metal sulfide oxidation reactions, and more preferably with looping back of second step oxide to the first step as an oxidizing agent, to generate sulfur dioxide and a useful metal or metal oxide, and react the sulfur dioxide with halogen (iodine or bromine) and water to produce sulfuric and halogen acid under moderate process conditions and equipment requirements and then dissociating the halogen acids (HI or HBr) to halogen and hydrogen as an overall environmentally and cost efficient and otherwise acceptable safe process for producing hydrogen and other useful products.
    Type: Application
    Filed: July 5, 2011
    Publication date: February 9, 2012
    Applicant: Orchard Material Technology LLC
    Inventors: Lawrence F. McHugh, Leonid Shekhter
  • Publication number: 20110094226
    Abstract: Process and apparatus are provided for a high energy efficiency chemical combustion process. The process provides two reaction steps, both of which are exothermic. First, a reduced oxygen carrier is contacted with oxygen in a reactor to form an oxidized oxygen carrier, such as metal oxide or metal suboxide, and then the oxidized oxygen carrier is fed to a second reactor and combusted with a fuel. The reaction produces the reduced oxygen carrier and carbon dioxide. The reduced oxygen carrier from the second reactor is recycled back to said first reactor. Carbon monoxide can also be produced during the process depending on stoichiometric amounts of the reactants. Though the process can be performed in various types of reactor systems, one preferred embodiment is the flash furnace with the production of fly ash during combustion. The process is highly efficient and produces a large amount of usable work.
    Type: Application
    Filed: December 4, 2009
    Publication date: April 28, 2011
    Inventors: Lawrence F. McHugh, Leonid N. Shekhter
  • Patent number: 7754185
    Abstract: The invention relates to high purity MoO2 powder by reduction of ammonium molybdate or molybdenum trioxide using hydrogen as the reducing agent in a rotary or boat furnace. Consolidation of the powder by press/sintering, hot pressing, and/or HIP is used to make discs, slabs, or plates, which are used as sputtering targets. The MoO2 disc, slab, or plate form is sputtered on a substrate using a suitable sputtering method or other physical means to provide a thin film having a desired film thickness. The thin films have properties such as electrical, optical, surface roughness, and uniformity comparable or superior to those of indium-tin oxide (ITO) and zinc-doped ITO in terms of transparency, conductivity, work function, uniformity, and surface roughness.
    Type: Grant
    Filed: January 18, 2006
    Date of Patent: July 13, 2010
    Assignee: H.C. Starck Inc.
    Inventors: Lawrence F. McHugh, Prabhat Kumar, David Meendering, Richard Wu, Gerhard Wötting, Richard Nicholson
  • Publication number: 20080260612
    Abstract: Multi-step metal compound oxidation process to produce compounds and enhanced metal oxides from various source materials, e.g. metal sulfides, carbides, nitrides and other metal containing materials with metal oxides from secondary reaction steps being utilized as an oxidation agent in the first reactions.
    Type: Application
    Filed: April 18, 2008
    Publication date: October 23, 2008
    Applicant: Orchard Material Technology, LLC
    Inventor: Lawrence F. McHugh
  • Patent number: 6730279
    Abstract: High purity ammonium dimolybdate or molybdenum oxide is produced by the pressure oxidation of low grade molybdenite concentrates or molybdenum intermediates. The process entails nearly complete oxidation of the sulfide minerals while optimizing the process chemistry and autoclave conditions to solubilize as little of the molybdenum values as possible. The autoclave discharge 12 is then subjected to a leaching step, either an alkaline leach 50, 400 or ammonium leach 250 process, before or after a liquid/solid separation step 20, 220, 410. The solution is then subjected to (a) filtration 60, 410, solvent extraction 70, 440, crystallization 90,450, and calcination 120, 480 or (b) filtration 260, 280, crystallization 290, and calcination 320 to produce a product suitable for chemical-grade molybdenum oxide 125, 325, 485.
    Type: Grant
    Filed: May 9, 2001
    Date of Patent: May 4, 2004
    Assignee: H. C. Starck, Inc.
    Inventors: Robert W. Balliett, Wolfgang Kummer, John E. Litz, Lawrence F. McHugh, Harry H. K. Nauta, Paul B. Queneau, Rong-Chien Wu
  • Publication number: 20030086864
    Abstract: High purity ammonium dimolybdate or molybdenum oxide is produced by the pressure oxidation of low grade molybdenite concentrates or molybdenum intermediates. The process entails nearly complete oxidation of the sulfide minerals while optimizing the process chemistry and autoclave conditions to solubilize as little of the molybdenum values as possible. The autoclave discharge 12 is then subjected to a leaching step, either an alkaline leach 50, 400 or ammonium leach 250 process, before or after a liquid/solid separation step 20, 220, 410. The solution is then subjected to (a) filtration 60, 410, solvent extraction 70, 440, crystallization 90,450, and calcination 120, 480 or (b) filtration 260, 280, crystallization 290, and calcination 320 to produce a product suitable for chemical-grade molybdenum oxide 125, 325, 485.
    Type: Application
    Filed: May 9, 2001
    Publication date: May 8, 2003
    Inventors: Robert W. Balliett, Wolfgang Kummer, John E. Litz, Lawrence F. McHugh, Harry H. K. Nauta, Paul B. Queneau, Rong-Chien Wu
  • Patent number: 4552749
    Abstract: A process is provided for converting MoS.sub.2 to MoO.sub.2 wherein, MoS.sub.2 in particulate form is fed into a reactor while flowing MoO.sub.3 vapor therein to effect reaction thereof with MoS.sub.2 to form MoO.sub.2. The temperature in the reactor is maintained at a level sufficient to cause the reaction to go forward. A portion of the MoO.sub.2 is removed from the reactor as a product and the remainder is selectively oxidized at a temperature sufficient to generate gaseous MoO.sub.3 which is recycled to the reactor relative to the flow of MoS.sub.2 therein to convert the MoS.sub.2 to MoO.sub.2.
    Type: Grant
    Filed: January 11, 1985
    Date of Patent: November 12, 1985
    Assignee: AMAX Inc.
    Inventors: Lawrence F. McHugh, Dale K. Huggins, Malcolm T. Hepworth, John M. Laferty