Patents by Inventor Lawrence J. Bregoli

Lawrence J. Bregoli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110039178
    Abstract: A fuel cell power plant (10) includes a fuel cell (12) having a membrane electrode assembly (MEA) (16), disposed between an anode support plate (14) and a cathode support plate (18), the anode and/or cathode support plates include a hydrophilic substrate layer (80, 82) having a predetermined pore size. The pressure of the reactant gas streams (22, 24) is greater than the pressure of the coolant stream (26), such that a greater percentage of the pores within the hydrophilic substrate layer contain reactant gas rather than water. Any water that forms on the cathode side of the MEA will migrate through the cathode support plate and away from the MEA. Controlling the pressure also ensures that the coolant water will continually migrate from the coolant stream toward the anode side of the MEA, thereby preventing the membrane from becoming dry. Proper pore size and a pressure differential between coolant and reactants improves the electrical efficiency of the fuel cell.
    Type: Application
    Filed: October 14, 2010
    Publication date: February 17, 2011
    Inventors: Timothy A. Bekkedahl, Lawrence J. Bregoli, Ned E. Cipollini, Timothy W. Patterson, Marianne Pemberton, Jonathan Puhalski, Carl A. Reiser, Richard D. Sawyer, Margaret M. Steinbugler, Jung S. Yi
  • Patent number: 7258945
    Abstract: A fuel cell power plant includes a fuel cell having a membrane electrode assembly (MEA), disposed between an anode support plate and a cathode support plate, the anode and/or cathode support plates include a hydrophilic substrate layer having a predetermined pore size. The pressure of the reactant gas streams is greater than the pressure of the coolant stream, such that a greater percentage of the pores within the hydrophilic substrate layer contain reactant gas rather than water. Any water that forms on the cathode side of the MEA will migrate through the cathode support plate and away from the MEA. Controlling the pressure also ensures that the coolant water will continually migrate from the coolant stream toward the anode side of the MEA, thereby preventing the membrane from becoming dry. Proper pore size and a pressure differential between coolant and reactants improves the electrical efficiency of the fuel cell.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: August 21, 2007
    Assignee: UTC Power Corporation
    Inventors: Timothy A. Bekkedahl, Lawrence J. Bregoli, Ned E. Cipollini, Timothy W. Patterson, Marianne Pemberton, Jonathan Puhalski, Carl A. Reiser, Richard D. Sawyer, Margaret M. Steinbugler, Jung S. Yi
  • Patent number: 6913845
    Abstract: Each cell of a fuel cell stack is provided, between the anode 37 and cathodes 38, with either (a) a permanent shunt (20) which may be a discrete resistor (42-44), a diode (95), a strip of compliant carbon cloth (65), or a small amount of conductive carbon black (22) in the ionomer polymer mixture of which the proton exchange membrane (39) is formed, or (b) a removeable shunt such as a conductor (69) which may be rotated into and out of contact with the fuel cell anodes and cathodes, or a conductor (85) which may be urged into contact by means of a shape memory alloy actuator spring (90, 91), which may be heated.
    Type: Grant
    Filed: October 28, 2002
    Date of Patent: July 5, 2005
    Assignee: UTC Fuel Cells, LLC
    Inventors: Timothy A. Bekkedahl, Lawrence J. Bregoli, Richard D. Breault, Emily A. Dykeman, Jeremy P. Meyers, Timothy W. Patterson, Tommy Skiba, Chris Vargas, Deliang Yang, Jung S. Yi
  • Publication number: 20040106034
    Abstract: A fuel cell power plant includes a fuel cell having a membrane electrode assembly (MEA), disposed between an anode support plate and a cathode support plate, the anode and/or cathode support plates include a hydrophilic substrate layer having a predetermined pore size. The pressure of the reactant gas streams is greater than the pressure of the coolant stream, such that a greater percentage of the pores within the hydrophilic substrate layer contain reactant gas rather than water. Any water that forms on the cathode side of the MEA will migrate through the cathode support plate and away from the MEA. Controlling the pressure also ensures that the coolant water will continually migrate from the coolant stream toward the anode side of the MEA, thereby preventing the membrane from becoming dry. Proper pore size and a pressure differential between coolant and reactants improves the electrical efficiency of the fuel cell.
    Type: Application
    Filed: November 26, 2003
    Publication date: June 3, 2004
    Inventors: Timothy A. Bekkedahl, Lawrence J. Bregoli, Ned E. Cipollini, Timothy W. Patterson, Marianne Pemberton, Jonathan Puhalski, Carl A. Reiser, Richard D. Sawyer, Margaret M. Steinbugler, Jung S. Yi
  • Publication number: 20040081866
    Abstract: Each cell of a fuel cell stack is provided, between the anode 37 and cathodes 38, with either (a) a permanent shunt (20) which may be a discrete resistor (42-44), a diode (95), a strip of compliant carbon cloth (65), or a small amount of conductive carbon black (22) in the ionomer polymer mixture of which the proton exchange membrane (39) is formed, or (b) a removeable shunt such as a conductor (69) which may be rotated into and out of contact with the fuel cell anodes and cathodes, or a conductor (85) which may be urged into contact by means of a shape memory alloy actuator spring (90, 91), which may be heated.
    Type: Application
    Filed: October 28, 2002
    Publication date: April 29, 2004
    Inventors: Timothy A. Bekkedahl, Lawrence J. Bregoli, Richard D. Breault, Emily A. Dykeman, Jeremey P. Meyers, Timothy W. Patterson, Tommy Skiba, Chris Vargas, Deliang Yang, Jung S. Yi
  • Publication number: 20020071978
    Abstract: Fuel Cell Having a Hydrophilic Substrate Layer A fuel cell power plant includes a fuel cell having a membrane electrode assembly (MEA), disposed between an anode support plate and a cathode support plate, the anode and/or cathode support plates include a hydrophilic substrate layer having a predetermined pore size. The pressure of the reactant gas streams is greater than the pressure of the coolant stream, such that a greater percentage of the pores within the hydrophilic substrate layer contain reactant gas rather than water. Any water that forms on the cathode side of the MEA will migrate through the cathode support plate and away from the MEA. Controlling the pressure also ensures that the coolant water will continually migrate from the coolant stream toward the anode side of the MEA, thereby preventing the membrane from becoming dry. Proper pore size and a pressure differential between coolant and reactants improves the electrical efficiency of the fuel cell.
    Type: Application
    Filed: November 28, 2001
    Publication date: June 13, 2002
    Inventors: Timothy A. Bekkedahl, Lawrence J. Bregoli, Ned E. Cipollini, Timothy W. Patterson, Marianne Pemberton, Jonathan Puhalski, Carl A. Reiser, Richard D. Sawyer, Margaret M. Steinbugler, Jung S. Yi
  • Patent number: 5478663
    Abstract: The reactant manifolds and corners of a molten carbonate fuel cell stack are sealed with particulate lithium aluminate members which are sufficiently porous so as to resist significant electrolyte migration therethrough. The seal members which are disposed in vertical planes of the stack are preferentially formed from lithium aluminate grains which are bonded together by a silica-free glass binder. The seal members which are disposed in horizontal planes in the stack are preferably formed from lithium aluminate grains which are bonded together by surface hydrolysis. Alumina-clad stainless steel labyrinth seal members are associated with each of the horizontal seal members to inhibit electrolyte migration from the cell electrolyte matrices to the vertical seal members.
    Type: Grant
    Filed: March 22, 1994
    Date of Patent: December 26, 1995
    Assignee: International Fuel Cells Corporation
    Inventors: Ned E. Cipollini, Lawrence J. Bregoli, Donald L. Maricle
  • Patent number: 4810594
    Abstract: A method for making a fuel cell electrode is disclosed. A layer of hydrophobic polymer and an electro-catalyst is deposited on the surface of a porous electrode substrate and press-sintered by heating the catalyst layer to a temperature between the melting point and decomposition temperature of the polymer and simultaneously compressing the layer at a pressure between 20 pounds per square inch and 100 pounds per square inch. The heating and compressing are continued for a time period of between 10 minutes and 20 minutes. A fuel cell electrode made by the above method and a method for generating electricity using such an electrode are also disclosed. A press-sintered fuel cell electrode provides improved peak performance as well as improved tolerance to electrolyte solidification.
    Type: Grant
    Filed: April 7, 1988
    Date of Patent: March 7, 1989
    Assignee: International Fuel Cells Corporation
    Inventors: Lawrence J. Bregoli, Francis J. Luczak
  • Patent number: 4548876
    Abstract: An integrated current collecting electrode for a molten carbonate fuel cell includes a corrugated metal conductive strip positioned in contact with a catalyst layer. The corrugations of the metal strip form a plurality of gas channels immediately adjacent the surface of the catalyst through which a reactant gas flows. Each channel is filled with a particulate material to maintain separation between the metal strip and the catalyst in ensuring gas channel integrity. The catalyst may be in the form of a compacted, particulate material provided the particle size of the material within the gas channels is larger than that of the catalyst particles to prevent catalyst migration to the metal conductor and provide reactant gas access to the catalyst layer. The gas channels formed by the corrugations of the metal strip are arranged in an offset pattern along the direction of gas flow for improved reactant gas distribution to the catalyst layer.
    Type: Grant
    Filed: October 17, 1984
    Date of Patent: October 22, 1985
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventor: Lawrence J. Bregoli
  • Patent number: 4322482
    Abstract: Thru-cracks in the electrolyte retaining matrix of a molten carbonate fuel cell caused by thermal cycling of the cell between operating and room temperature are prevented by an improved matrix comprising a major proportion of submicron support particles and a minor proportion, perhaps only a few percent, of much larger crack attenuator particles. In one embodiment wherein the electrolyte is to be a binary lithium-potassium carbonates composition, the matrix comprises 90 volume percent submicron lithium aluminate support particles and 10 volume percent alumina crack attenuator particles with an average size of 100 microns.
    Type: Grant
    Filed: June 9, 1980
    Date of Patent: March 30, 1982
    Assignee: United Technologies Corporation
    Inventors: Calvin L. Bushnell, Lawrence J. Bregoli, Craig R. Schroll
  • Patent number: 4206270
    Abstract: Porous cathodes for molten carbonate type fuel cells are made from perovskites. The perovskites tested to date all appear to be good cathode catalysts for the reduction of oxygen in molten carbonate electrolyte and are also stable in the electrolyte.
    Type: Grant
    Filed: December 14, 1978
    Date of Patent: June 3, 1980
    Assignee: United Technologies Corporation
    Inventors: H. Russell Kunz, Lawrence J. Bregoli, Francis J. Luczak
  • Patent number: 3979225
    Abstract: A fuel cell is disclosed in which the cathode is a gaseous diffusion fuel cell electrode operating with an acid electrolyte and nitrogen dioxide (NO.sub.2) alone or with oxygen. The cathode half cell reaction produces nitric oxide (NO) and water and the NO.sub.2 is externally regenerated by reaction of NO with oxygen to produce the nitrogen dioxide for reuse in the cell. When both NO.sub.2 and oxygen are used, oxidation of the NO formed back to the NO.sub.2 occurs within the cathode itself so it is possible to get more than 100% utilization of the NO.sub.2 in the fuel cell.
    Type: Grant
    Filed: December 13, 1974
    Date of Patent: September 7, 1976
    Assignee: United Technologies Corporation
    Inventors: Stanley W. Smith, Lawrence J. Bregoli