Patents by Inventor Lawrence J. Lawlor

Lawrence J. Lawlor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8658028
    Abstract: A process for removing elemental sulfur from liquid hydrocarbon steams such as transportation fuel streams, e.g. gasoline, diesel, kerosene, and jet, by contacting such streams with an immiscible aqueous solution under static mixing conditions. The aqueous solution contains a caustic and an effective amount of a Group I or Group II metal sulfide or polysulfide. The elemental sulfur in the stream is converted to a polysulfide that is not soluble in the hydrocarbon stream but is soluble in the aqueous solution, thus resulting in a hydrocarbon product stream having a substantially lower level of elemental sulfur.
    Type: Grant
    Filed: January 17, 2008
    Date of Patent: February 25, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ashok Uppal, Ramesh R. Hemrajani, Robert J. Falkiner, Lawrence J. Lawlor, Joseph L. Feimer
  • Publication number: 20100072109
    Abstract: A process for removing elemental sulfur from liquid hydrocarbon steams such as transportation fuel streams, e.g. gasoline, diesel, kerosene, and jet, by contacting such streams with an immiscible aqueous solution under static mixing conditions. The aqueous solution contains a caustic and an effective amount of a Group I or Group II metal sulfide or polysulfide. The elemental sulfur in the stream is converted to a polysulfide that is not soluble in the hydrocarbon stream but is soluble in the aqueous solution, thus resulting in a hydrocarbon product stream having a substantially lower level of elemental sulfur.
    Type: Application
    Filed: January 17, 2008
    Publication date: March 25, 2010
    Inventors: Ashok Uppal, Ramesh R. Hemrajani, Robert J. Falkiner, Lawrence J. Lawlor, Joseph L. Feimer
  • Patent number: 7632396
    Abstract: A method for reducing the level of elemental sulfur from sulfur-containing hydrocarbon streams as well as reducing the level of total sulfur in such streams. Preferred hydrocarbon streams include fuel streams such as naphtha and distillate streams that are transported through a pipeline. The sulfur-containing hydrocarbon stream is blended with an aqueous solution of water, a caustic, and at least one metal sulfide thereby resulting in an organic phase and an aqueous phase. The blended stream is then passed through a bed of solids having a suitable surface area so that a substantial amount of the sulfur moieties are removed by the aqueous phase.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: December 15, 2009
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Joseph L. Feimer, David J. LeClair, Lawrence J. Lawlor
  • Patent number: 7597798
    Abstract: A process for removing relatively low levels of high molecular weight organic sulfur from hydrocarbon streams, particularly from streams that have picked-up such sulfur while being transported through a pipeline. The hydrocarbon stream containing the organic sulfur is passed through a bed of adsorbent material comprised of a high Ni content, high surface area material that also contains an effective amount of SiO2 or GeO2 and an alkaline earth metal.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: October 6, 2009
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Joseph L. Feimer, Bal K. Kaul, Lawrence J. Lawlor, Jeenok T. Kim, G. Bryce McGarvey
  • Patent number: 7074324
    Abstract: A process for removing sulfur compounds from hydrocarbon streams by contacting the hydrocarbon stream, especially a gasoline stream, with an adsorbent material. The adsorbent material is regenerated with hydrogen or a hydrogen/H2S mixture.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: July 11, 2006
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Joseph L. Feimer, Bal K. Kaul, Lawrence J. Lawlor
  • Publication number: 20030226786
    Abstract: A process for removing sulfur compounds from hydrocarbon streams by contacting the hydrocarbon stream, especially a gasoline stream, with an adsorbent material. The adsorbent material is regenerated with hydrogen or a hydrogen/H2S mixture.
    Type: Application
    Filed: April 25, 2003
    Publication date: December 11, 2003
    Inventors: Joseph L. Feimer, Bal K. Kaul, Lawrence J. Lawlor
  • Publication number: 20020086434
    Abstract: A method for the direct determination of the acid distribution in petroleum crude oil and crude oil fractions by chlorine negative ion chemical ionization mass spectrometry. The crude oil or crude oil fraction is introduced into a mass spectrometer followed by the introduction of a chlorinated reagent capable of producing chloride anions that can react with the acid compounds of the crude oil or crude oil fractions. The mass spectrometer is operated in negative ion mode to selectively detect negatively charged chlorinated adduct ion species. A mass spectra is obtained, from which adduct ions are selected. Peaks from resulting mass chromatograms are identified from which the acid species are quantified.
    Type: Application
    Filed: September 21, 2001
    Publication date: July 4, 2002
    Inventors: Stilianos G. Roussis, Lawrence J. Lawlor
  • Patent number: 4734539
    Abstract: Naphtha is isomerized using a medium-pore zeolite catalyst.Isomerization is accomplished by contacting the hydrocarbon with the medium-pore zeolite catalyst at a temperature in the range 200.degree. to 400.degree. C., preferably, at a space velocity of 0.05 to 75 v/v/hr, preferably, at a pressure at 14.7 to 1500 psig.The medium zeolite catalyst employed has a silica to alumina ratio in the range of about 5 to >30, preferably 10-20, more preferably 12-17 and a pore size of about 5.5 to 6.8 .ANG.. The preferred medium pore zeolite is a zeolite of the offretite type. The zeolite preferably has associated with it a hydrogenation component which is typically a Group VIII metal, oxide or sulphide, or mixtures thereof, preferably platinum or palladium. The preferred offretite type zeolite may be any of the readily available commercial materials and may have their SiO.sub.2 /Al.sub.2 O.sub.
    Type: Grant
    Filed: October 29, 1986
    Date of Patent: March 29, 1988
    Assignee: Exxon Research and Engineering Company
    Inventors: Lawrence J. Lawlor, William J. Murphy