Patents by Inventor Lawrence J. Lukis

Lawrence J. Lukis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140352676
    Abstract: An electromagnetic launcher operable to accelerate launch packages of various transverse sizes, the launcher comprising, in one example, two high-current linear motors having longitudinally extending, laterally open propulsion channels configured to receive and accelerate metal armatures integrated with a launch package; and a power actuated repositioning mechanism for spacing the motors apart as needed.
    Type: Application
    Filed: February 28, 2014
    Publication date: December 4, 2014
    Applicant: General Electrodynamics International, LLC
    Inventors: Yuri Arnoldovich Dreizin, Lawrence J. Lukis, Dmitri Rebrov
  • Patent number: 8701539
    Abstract: An electromagnetic launcher operable to accelerate launch packages of various transverse sizes, the launcher comprising, in one example, two high-current linear motors having longitudinally extending, laterally open propulsion channels configured to receive and accelerate metal armatures integrated with a launch package; and a power actuated repositioning mechanism for spacing the motors apart as needed.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 22, 2014
    Assignee: General Electrodynamics International, LLC
    Inventors: Yuri Arnoldovich Dreizin, Lawrence J. Lukis, Dmitri Rebrov
  • Patent number: 8239284
    Abstract: A customer sends a CAD file for the part to be manufactured to the system. The system assesses the CAD file to determine various pieces of manufacturing information. One or more acceptability criteria are applied to the part, such as whether the part can be machined in two opposing orientations in a 3 axis CNC machine. If not, the system sends a file to the customer graphically indicating which portions of the part need modification to be manufacturable. The system provides the customer with a quotation form, that allows the customer to select several parameters, such as number of cavities or parts per workpiece block, surface finish and material, which are independent of the shape of the part. The quotation module then provides the customer with the cost to manufacture the mold or a number of parts, which may include both molded parts and total profiled machined parts. Budget-driven quotation is possible, wherein proposed modifications in the molding process are controlled by the budget of the customer.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: August 7, 2012
    Assignee: Proto Labs, Inc.
    Inventors: Lawrence J. Lukis, Christopher Walls-Manning, Mark R. Kubicek
  • Patent number: 8140401
    Abstract: A customer sends a CAD file for the part to be molded to the system. The system assesses the CAD file to determine various pieces of mold manufacturing information. One or more acceptability criteria are applied to the part, such as whether the part can be manufactured in a two-piece, straight-pull mold, and whether the mold can by CNC machined out of aluminum. If not, the system sends a file to the customer graphically indicating which portions of the part need modification to be manufacturable. The system provides the customer with a quotation form, that allows the customer to select several parameters, such as number of cavities, surface finish and material, which are independent of the shape of the part. The quotation module then provides the customer with the cost to manufacture the mold or a number of parts. Budget-driven quotation is possible, wherein proposed modifications in the molding process are controlled by the budget of the customer.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: March 20, 2012
    Assignee: Proto Labs, Inc.
    Inventors: Lawrence J. Lukis, John M. Gilbert, Christopher Walls-Manning
  • Patent number: 7957830
    Abstract: A customer transmits their 3D CAD file for a part to be total profile machined. Computer analysis of the transmitted CAD file produces CNC machining instructions, which are transmitted back to an address defined by the customer. The customer can then use the transmitted CNC machining instructions to total profile machine their own part using their own CNC mill at the location where the part is likely needed. The transmitted instructions include not only the tool paths for CNC machining of the total profile of the part, but also for additional features formed into the encircling portion of a material block from which the part is to be total profile machined. For instance, the CNC machining instructions transmitted back to the customer can define a registration recess and/or channels or undercuts for fluid support material on an A-side of a material block. After the A-side of the block is machined, the customer adds and solidifies fluid support material into the machined recess.
    Type: Grant
    Filed: June 10, 2008
    Date of Patent: June 7, 2011
    Assignee: Proto Labs, Inc.
    Inventors: Lawrence J. Lukis, Yuri A. Dreizin, Gregory M. Bloom
  • Publication number: 20110060439
    Abstract: A customer sends a CAD file for the part to be manufactured to the system. The system assesses the CAD file to determine various pieces of manufacturing information. One or more acceptability criteria are applied to the part, such as whether the part can be machined in two opposing orientations in a 3 axis CNC machine. If not, the system sends a file to the customer graphically indicating which portions of the part need modification to be manufacturable. The system provides the customer with a quotation form, that allows the customer to select several parameters, such as number of cavities or parts per workpiece block, surface finish and material, which are independent of the shape of the part. The quotation module then provides the customer with the cost to manufacture the mold or a number of parts, which may include both molded parts and total profiled machined parts. Budget-driven quotation is possible, wherein proposed modifications in the molding process are controlled by the budget of the customer.
    Type: Application
    Filed: October 12, 2010
    Publication date: March 10, 2011
    Applicant: PROTO LABS, INC.
    Inventors: Lawrence J. Lukis, Christopher Walls-Manning, Mark R. Kubicek
  • Patent number: 7840443
    Abstract: A customer sends a CAD file for the part to be manufactured to the system. The system assesses the CAD file to determine various pieces of manufacturing information. One or more acceptability criteria are applied to the part, such as whether the part can be machined in two opposing orientations in a 3 axis CNC machine. If not, the system sends a file to the customer graphically indicating which portions of the part need modification to be manufacturable. The system provides the customer with a quotation form, that allows the customer to select several parameters, such as number of cavities or parts per workpiece block, surface finish and material, which are independent of the shape of the part. The quotation module then provides the customer with the cost to manufacture the mold or a number of parts, which may include both molded parts and total profiled machined parts. Budget-driven quotation is possible, wherein proposed modifications in the molding process are controlled by the budget of the customer.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: November 23, 2010
    Assignee: Proto Labs, Inc.
    Inventors: Lawrence J. Lukis, Christopher Walls-Manning, Mark R. Kubicek
  • Patent number: 7836573
    Abstract: A method and apparatus are provided for total profile machining of a part, such as from a block of thermoplastic polymer. A first side of the part is machined together with an encircling recess. A registration/potting fixture is placed into the encircling recess. The registration/potting fixture is used to evacuate air from the machined side of the part and to pressure pack degassed fluid potting compound against the machined side of the part. The registration/potting fixture is cooled such as with a coolant to solidify the potting material. Then the registration/potting fixture is used to fixture the block in a new orientation for CNC machining another side of the part. Upon removal of the potting material from the part, the total profile machined part is freed for shipment to the customer.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: November 23, 2010
    Assignee: Proto Labs, Inc.
    Inventors: Lawrence J. Lukis, Gregory M. Bloom
  • Publication number: 20090302496
    Abstract: A customer transmits their 3D CAD file for a part to be total profile machined. Computer analysis of the transmitted CAD file produces CNC machining instructions, which are transmitted back to an address defined by the customer. The customer can then use the transmitted CNC machining instructions to total profile machine their own part using their own CNC mill at the location where the part is likely needed. The transmitted instructions include not only the tool paths for CNC machining of the total profile of the part, but also for additional features formed into the encircling portion of a material block from which the part is to be total profile machined. For instance, the CNC machining instructions transmitted back to the customer can define a registration recess and/or channels or undercuts for fluid support material on an A-side of a material block. After the A-side of the block is machined, the customer adds and solidifies fluid support material into the machined recess.
    Type: Application
    Filed: June 10, 2008
    Publication date: December 10, 2009
    Applicant: PROTO LABS, INC.
    Inventors: Lawrence J. Lukis, Yuri A. Dreizin, Gregory M. Bloom
  • Patent number: 7590466
    Abstract: Automated, custom mold manufacture for a part begins by creating and storing a collection of information of standard tool geometries and surface profiles machinable by each of the standard tool geometries. A customer sends a CAD file for the part to be molded to the system. The system assesses the CAD file to determine various pieces of mold manufacturing information. One or more acceptability criteria are applied to the part, such as whether the part can be manufactured in a two-piece, straight-pull mold, and whether the mold can by CNC machined out of aluminum. If not, the system sends a file to the customer graphically indicating which portions of the part need modification to be manufacturability. The system provides the customer with a quotation form, that allows the customer to select several parameters, such as number of cavities, surface finish and material, which an independent of the shape of the part.
    Type: Grant
    Filed: October 21, 2004
    Date of Patent: September 15, 2009
    Assignee: Proto Labs, Inc.
    Inventors: Lawrence J. Lukis, Yuri A. Dreizin, John M. Gilbert
  • Patent number: 7574339
    Abstract: The present invention is a method and system for simulating fluid flow in a cavity, having relevance to the modeling of viscous flows within thin cavities of complex shapes in which heat exchange with the cavity walls may be a governing factor, as in injection molding of plastic parts. Its automated discretization scheme, in which the model cavity is partitioned into macrocells, each macrocell having substantial contact areas with the model cavity walls, eliminates the need for time consuming and expensive manual model configuration required by some modeling methods. Because of the simplicity of the discretization, models based on the invention are less demanding on computer resources then conventional finite element methods, and execute more quickly. A key innovation of the method is a function characterizing the shape of a macrocell that appears in a coefficient in equations governing the flow.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: August 11, 2009
    Assignee: The Protomold Company
    Inventors: Lawrence J. Lukis, Yuri Dreizin
  • Publication number: 20090125418
    Abstract: A customer sends a CAD file for the part to be molded to the system. The system assesses the CAD file to determine various pieces of mold manufacturing information. One or more acceptability criteria are applied to the part, such as whether the part can be manufactured in a two-piece, straight-pull mold, and whether the mold can by CNC machined out of aluminum. If not, the system sends a file to the customer graphically indicating which portions of the part need modification to be manufacturable. The system provides the customer with a quotation form, that allows the customer to select several parameters, such as number of cavities, surface finish and material, which are independent of the shape of the part. The quotation module then provides the customer with the cost to manufacture the mold or a number of parts. Budget-driven quotation is possible, wherein proposed modifications in the molding process are controlled by the budget of the customer.
    Type: Application
    Filed: January 15, 2009
    Publication date: May 14, 2009
    Applicant: PROTO LABS, INC.
    Inventors: Lawrence J. Lukis, John M. Gilbert, Christopher Walls-Manning
  • Patent number: 7496528
    Abstract: A customer sends a CAD file for the part to be molded to the system. The system assesses the CAD file to determine various pieces of mold manufacturing information. One or more acceptability criteria are applied to the part, such as whether the part can be manufactured in a two-piece, straight-pull mold, and whether the mold can by CNC machined out of aluminum. If not, the system sends a file to the customer graphically indicating which portions of the part need modification to be manufacturable. The system provides the customer with a quotation form, that allows the customer to select several parameters, such as number of cavities, surface finish and material, which are independent of the shape of the part. The quotation module then provides the customer with the cost to manufacture the mold or a number of parts. Budget-driven quotation is possible, wherein proposed modifications in the molding process are controlled by the budget of the customer.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: February 24, 2009
    Assignee: Proto Labs, Inc.
    Inventors: Lawrence J. Lukis, John M. Gilbert, Christopher Walls-Manning
  • Publication number: 20080120823
    Abstract: A method and apparatus are provided for total profile machining of a part, such as from a block of thermoplastic polymer. A first side of the part is machined together with an encircling recess. A registration/potting fixture is placed into the encircling recess. The registration/potting fixture is used to evacuate air from the machined side of the part and to pressure pack degassed fluid potting compound against the machined side of the part. The registration/potting fixture is cooled such as with a coolant to solidify the potting material. Then the registration/potting fixture is used to fixture the block in a new orientation for CNC machining another side of the part. Upon removal of the potting material from the part, the total profile machined part is freed for shipment to the customer.
    Type: Application
    Filed: October 25, 2006
    Publication date: May 29, 2008
    Applicant: The Protomold Company, Inc.
    Inventors: Lawrence J. Lukis, Gregory M. Bloom
  • Publication number: 20080126047
    Abstract: The present invention is a method and system for simulating fluid flow in a cavity, having relevance to the modeling of viscous flows within thin cavities of complex shapes in which heat exchange with the cavity walls may be a governing factor, as in injection molding of plastic parts. Its automated discretization scheme, in which the model cavity is partitioned into macrocells, each macrocell having substantial contact areas with the model cavity walls, eliminates the need for time consuming and expensive manual model configuration required by some modeling methods. Because of the simplicity of the discretization, models based on the invention are less demanding on computer resources then conventional finite element methods, and execute more quickly. A key innovation of the method is a function characterizing the shape of a macrocell that appears in a coefficient in equations governing the flow.
    Type: Application
    Filed: September 19, 2006
    Publication date: May 29, 2008
    Inventors: Lawrence J. Lukis, Yuri Dreizin
  • Patent number: 7299101
    Abstract: Any issues associated with manufacture of a part are identified and highlighted on a part model. A software method and system then uses motion of the part model for communicating the manufacturability issues to the customer. The motion can include a repositioning of a part rendering to a preferred orientation position, a fly-around so the customer can appreciate the next zoom location, and then a zooming in on the issue desired to be shown. Alternatively or in conjunction with the zooming and fly-around motion, the orientation of the part rendering showing the manufacturability issues can be three-dimensionally manipulated such as with a click-drag-drop command of the customer's computer mouse. By adding a moveable aspect to the communication, customers can much better understand which changes are recommended or required of the part.
    Type: Grant
    Filed: March 6, 2006
    Date of Patent: November 20, 2007
    Assignee: The Protomold Company, Inc.
    Inventors: Lawrence J. Lukis, Matthew Hartloff
  • Patent number: 7123986
    Abstract: A customer sends CAD files for two or more parts to be molded in a family to the system. The system provides the customer with a quotation form that allows the customer to select several family-level parameters which are independent of the shape of the part, such as material and delivery date. The quotation also allows the customer to select several part-level parameters which are independent off the shape of the part, such as quantity of each part and surface finish. The system assesses the CAD files to determine savings which can be achieved by molding the parts as a family, with multiple parts in the same mold block. If possible, the system machines cavities for the multiple parts into a single mold block, passing on reductions in cost to the customer both in the quote and in the final product delivery.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: October 17, 2006
    Assignee: The Protomold Company, Inc.
    Inventors: Lawrence J. Lukis, Christopher Walls-Manning, Mark R. Kubicek
  • Patent number: 7089082
    Abstract: A first customer provides a CAD file defining the surface profile for a part to be molded to the system, and a second customer does the same for a second part. The system determines whether the materials match and the run dates overlap, thereby qualifying the parts for use in a multi-customer mold block. The system assesses the part surface profile (which could have any of a virtually infinite number of shapes) of the parts submitted and lays out the parts from multiple customers on one or more multi-customer mold blocks. Savings are generated, such as by reducing redundancies in press clean-up, in set-up, in tooling, and in surface finishing. Due to these savings, the system provides a quotation of the part to at least one of the customers which differs from the quotation that would be provided if each part was run independent of parts of other customers.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: August 8, 2006
    Assignee: The Protomold Company, Inc.
    Inventors: Lawrence J. Lukis, Christopher Walls-Manning, Mark R. Kubicek
  • Patent number: 6467867
    Abstract: The present invention relates to a method and apparatus for precise placement of discrete marks comprising a digital image using an optical sensor adapted to read individual dots of a variety of calibration patterns. The sensor is preferably coupled to a reciprocating carriage assembly so that the dot patterns recorded upon a printing media from at least two of a plurality of print heads disposed on the carriage assembly are compared, a preferred timing or trajectory control sequence is calculated, and thereafter relayed to the print heads to correct for physical misalignment of print heads, manufacturing tolerance errors, and the like to improve registration in a digital color print engine.
    Type: Grant
    Filed: September 3, 1997
    Date of Patent: October 22, 2002
    Assignee: MacDermid Acumen, Inc.
    Inventors: John Walter Worthington, Lawrence J. Lukis
  • Patent number: 5889534
    Abstract: The present invention relates to the a method usable in the field of printing, and in particular to a method of characterizing a drum-based digital print engine so that each of a plurality of ink droplets propelled toward a common picture element location, or pixel, of a print media coupled to an exterior surface of a rotating drum member precisely reaches the same pixel location irregardless of slight variations in portions of the surface of the drum. In a preferred embodiment, a drum based printing system contains eight print heads mounted on an axially driven carriage assembly and arranged in two rows of four such that no two print heads prints upon a common print swath at any given time, and each row of print heads is further oriented rotationally around a portion of the circumference of the drum member.
    Type: Grant
    Filed: September 10, 1996
    Date of Patent: March 30, 1999
    Assignee: Colorspan Corporation
    Inventors: Neill Arthur Kelso Johnson, Lawrence J. Lukis, John Patrick Novotny, Robert Anthony Laumeyer