Patents by Inventor Lawrence J. Mulligan
Lawrence J. Mulligan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9101772Abstract: A method of stimulation therapy and an apparatus for providing the therapy which addresses cardiac dysfunction including heart failure. The therapy employs atrial pacing pulses delivered to a heart after the atrial refractory period and timed so that they will not cause a ventricular contraction. These atrial pacing are timed to achieve beneficial effects on myocardial mechanics (efficacy) while maintaining an extremely low level of risk of arrhythmia induction. These methods may be employed individually or in combinations in an external or implantable ESS therapy delivery device.Type: GrantFiled: December 9, 2009Date of Patent: August 11, 2015Assignee: Medtronic, Inc.Inventors: Karen J. Kleckner, Kathleen A. Prieve, Jeffrey M. Gillberg, Ren Zhou, Kenneth M. Anderson, D. Curtis Deno, Glenn C. Zillmer, Ruth N. Klepfer, Vincent E. Splett, David E. Euler, Lawrence J. Mulligan, Edwin G. Duffin, David A. Igel, John E. Burnes
-
Publication number: 20120303084Abstract: The above-described methods and apparatus are believed to be of particular benefit for patients suffering heart failure including cardiac dysfunction, chronic HF, and the like and all variants as described herein and including those known to those of skill in the art to which the invention is directed. It will understood that the present invention offers the possibility of monitoring and therapy of a wide variety of acute and chronic cardiac dysfunctions. The current invention provides systems and methods for delivering therapy for cardiac hemodynamic dysfunction via the innervated myocardial substrate receives one or more discrete pulses of electrical stimulation during the refractory period of said innervated myocardial substrate.Type: ApplicationFiled: August 8, 2012Publication date: November 29, 2012Applicant: Medtronic, Inc.Inventors: Karen J. Kleckner, Kathleen A. Prieve, Jeffrey M. Gillberg, Ren Zhou, Kenneth M. Anderson, D. Curtis Deno, Glenn C. Zillmer, Ruth N. Klepfer, Vincent E. Splett, David E. Euler, Lawrence J. Mulligan, Edwin G. Duffin, David A. Igel, John E. Burnes
-
Patent number: 8180428Abstract: A method and system for use in selecting a cardiac pacing site includes sensors for tracking wall motion (e.g., sensors coupled to the right and left ventricular heart wall). The wall motion of one or more non-paced cardiac cycles is compared to the wall motion of one or more paced cardiac cycles to determine the effectiveness of one or more pacing sites. For example, image data may be generated to notify the user as to the effectiveness of the one or more pacing sites.Type: GrantFiled: April 9, 2009Date of Patent: May 15, 2012Assignee: Medtronic, Inc.Inventors: Daniel R. Kaiser, Michael R. Neidert, Nicholas David Skadsberg, Kenneth C. Gardeski, Lawrence J. Mulligan, James F. Kelley, Michael B. Shelton, Trent M. Fischer
-
Patent number: 7970466Abstract: A method and apparatus for optimizing and assessing the response to extra-systolic stimulation (ESS) are provided. An optimization/monitoring parameter is calculated as a function of potentiation ratio, PR, and recirculation fraction, RF, derived from measurements of myocardial contractile function during and after ESS. PR may be computed as the ratio of the contractile function on post-extra-systolic beats during ESS to baseline contractile function. RF may be computed as the slope of a linear regression performed on a plot of the contractile function for a post-extra-systolic beat versus the contractile function for the previous post-extra-systolic beat after ESS is ceased. The ESI resulting in a maximum optimization/monitoring parameter, preferably computed as the product of PR and RF, is determined as the optimal ESI. The operating ESI may be automatically adjusted, and/or PR and RF data may be stored for monitoring purposes.Type: GrantFiled: October 7, 2003Date of Patent: June 28, 2011Assignee: Medtronic, Inc.Inventors: Lawrence J. Mulligan, D. Curtis Deno, John E. Burnes, Nirav V. Sheth
-
Patent number: 7792581Abstract: Methods and systems for treating patients with diastolic heart failure (DHF) are disclosed which include slowing a patient's heart rate below its intrinsic rate, and controlling the rate using cardiac pacing therapy to improve LV filling and cardiac output. In certain embodiments, a pacing treatment rate may be determined by adjusting an adaptive rate by an amount determined by evaluating one or more patient parameters.Type: GrantFiled: February 28, 2006Date of Patent: September 7, 2010Assignee: Medtronic, Inc.Inventors: Douglas A. Hettrick, Lawrence J. Mulligan, David E. Euler
-
Publication number: 20100152804Abstract: The above-described methods and apparatus are believed to be of particular benefit for patients suffering heart failure including cardiac dysfunction, chronic HF, and the like and all variants as described herein and including those known to those of skill in the art to which the invention is directed. It will understood that the present invention offers the possibility of monitoring and therapy of a wide variety of acute and chronic cardiac dysfunctions. The current invention provides systems and methods for delivering therapy for cardiac hemodynamic dysfunction via the innervated myocardial substrate receives one or more discrete pulses of electrical stimulation during the refractory period of said innervated myocardial substrate.Type: ApplicationFiled: December 9, 2009Publication date: June 17, 2010Applicant: Medtronic, Inc.Inventors: Karen J. Kleckner, Kathleen A. Prieve, Jeffrey M. Gillberg, Ren Zhou, Kenneth M. Anderson, D. Curtis Deno, Glenn C. Zillmer, Ruth N. Klepfer, Vincent E. Splett, David E. Euler, Lawrence J. Mulligan, Edwin G. Duffin, David A. Igel, John E. Burnes
-
Publication number: 20090198298Abstract: A method and system for use in selecting a cardiac pacing site includes sensors for tracking wall motion (e.g., sensors coupled to the right and left ventricular heart wall). The wall motion of one or more non-paced cardiac cycles is compared to the wall motion of one or more paced cardiac cycles to determine the effectiveness of one or more pacing sites. For example, image data may be generated to notify the user as to the effectiveness of the one or more pacing sites.Type: ApplicationFiled: April 9, 2009Publication date: August 6, 2009Inventors: Daniel R. Kaiser, Michael R. Neidert, Nicholas David Skadsberg, Kenneth C. Gardeski, Lawrence J. Mulligan, James F. Kelley, Michael B. Shelton, Trent M. Fischer
-
Publication number: 20090125078Abstract: A method for selecting a cardiac pacing site includes steps of: securing first and second electromagnetic receiver coils at first and second positions, respectively, along a heart wall; collecting a set of non-paced heart wall motion data from each of the coils secured at the corresponding positions; applying cardiac pacing stimulation at at least one first pacing site; collecting a first set of paced heart wall motion data from each of the secured coils; comparing the non-paced heart wall motion data to the first set of paced heart wall motion data; and determining, based on the comparing, whether to maintain pacing at the at least one first cardiac pacing site or to apply pacing stimulation at a second pacing site for collection of a second set of paced heart wall motion data. The at least one first pacing site may include a right ventricular site and a left ventricular site.Type: ApplicationFiled: October 3, 2008Publication date: May 14, 2009Applicant: MEDTRONIC, INC.Inventors: Daniel R. Kaiser, Michael R. Neidert, Nicholas D. Skadsberg, Kenneth G. Gardeski, Lawrence J. Mulligan, James F. Kelley, Michael B. Shelton, Trent M. Fischer
-
Patent number: 7292888Abstract: A medical device, e.g., an implantable medical device, delivers one or more neurally-excitable stimulation pulses to myocardial tissue during a period when the tissue is refractory. The width of the pulses is less than or equal to approximately one half millisecond. In some embodiments, the current amplitude of the pulses is less than or equal to approximately twenty milliamps. In exemplary embodiments, the medical device delivers a pulse train of six or fewer pulses separated from each other by an interval that is greater than or equal to approximately ten milliseconds. In some embodiments, the medical device delivers pulses according to a schedule stored in a memory, or as a function of a monitored physiological parameter of a patient, such as an intracardiac pressure. In some embodiments, the medical device suspends or withholds delivery of neurally-excitable based on detection of cardiac ischemia.Type: GrantFiled: August 11, 2003Date of Patent: November 6, 2007Assignee: Medtronic, Inc.Inventors: D. Curtis Deno, David E. Euler, Lawrence J. Mulligan, Edwin G. Duffin, David A. Igel
-
Patent number: 7289850Abstract: In some embodiments, a method of applying stimulation pulse therapy to excitable tissue may include one or more of the following steps: (a) delivering a PESP stimulation therapy to the excitable tissue for a cardiac cycle, (b) delivering a NES stimulation therapy to the excitable tissue during certain cardiac cycles, (c) determining physiologic demand of the patient based on at least one physiologic measurement, (d) determining physiologic demand being placed on a heart based on at least one physiologic measurement, and ceasing the delivery of the NES and PESP stimulation therapy when physiologic demand returns to a base level, and (e) determining physiologic demand being placed on a heart based on at least one physiologic measurement, and modulating the ratio of the number of cardiac cycles in which the NES stimulation therapy is delivered to the number of cardiac cycles in which the PESP stimulation therapy is delivered based on physiologic demand.Type: GrantFiled: April 28, 2005Date of Patent: October 30, 2007Assignee: Medtronics, Inc.Inventors: John E. Burnes, Lawrence J. Mulligan, Randall L. Knoll
-
Patent number: 7130684Abstract: Methods and devices for improving ventricular contractile status of a patient suitably exploit changes in ventricular pressure and/or dP/dtmax to provide and/or optimize a response to a patient. The ventricular pressure may be appropriately correlated to intracellular calcium regulation, which is indicative of contractile status. To assess ventricular contractile status, the device suitably observes a cardiac perturbation of the patient and measures force interval potentiation following the perturbation. The contractile potentiation can then be stored and/or quantified in the implantable medical device to determine the ventricular contractile status of the patient, and an appropriate response may be provided to the patient as a function of the ventricular contractile status. Examples of responses may include administration of drug or neuro therapies, modification of a pacing rate, or the like.Type: GrantFiled: April 30, 2003Date of Patent: October 31, 2006Assignee: Medtronic, Inc.Inventors: Lawrence J. Mulligan, Michael R. S. Hill, John E. Burnes
-
Patent number: 7079887Abstract: A hemodynamic status of a patient is determined in an implanted medical device (IMD) by observing a perturbation of the patient's heart, measuring heart rate turbulence resulting from the perturbation, and quantifying the heart rate turbulence to determine the hemodynamic status. The perturbation may be naturally-occurring, or may be generated by the implantable medical device. The patient's response to heart rate turbulence may also be used to provide a response to the patient, such as providing an alarm and/or administering a therapy. Heart rate turbulence may also be used to tune and/or optimize a device parameter such as A-V or V—V pacing intervals.Type: GrantFiled: March 20, 2003Date of Patent: July 18, 2006Assignee: Medtronic, Inc.Inventors: John E. Burnes, Lawrence J. Mulligan, Michael R. S. Hill
-
Patent number: 6994676Abstract: Methods and devices for improving ventricular contractile status of a patient suitably exploit changes in ventricular pressure and/or dP/dtmax to provide and/or optimize a response to a patient. The ventricular pressure may be appropriately correlated to intracellular calcium regulation, which is indicative of contractile status. To assess ventricular contractile status, the device suitably observes a cardiac perturbation of the patient and measures force interval potentiation following the perturbation. The contractile potentiation can then be stored and/or quantified in the implantable medical device to determine the ventricular contractile status of the patient, and an appropriate response may be provided to the patient as a function of the ventricular contractile status. Examples of responses may include administration of drug or neuro therapies, modification of a pacing rate, or the like.Type: GrantFiled: April 30, 2003Date of Patent: February 7, 2006Assignee: Medtronic, IncInventors: Lawrence J. Mulligan, Ursula Gebhardt
-
Patent number: 6915157Abstract: An implantable heart monitor (IHM) implanted in a patient's body having electrogram (EGM) sense electrodes coupled with EGM sense circuitry to generate sense events upon detection of cardiac depolarizations and a blood pressure measurement transducer disposed in a heart chamber and coupled with blood pressure measurement circuitry operates to assess heart failure state as a function of mechanical pulsus alternans (MPA). MPA episodes are detected, and MPA characteristics of the MPA episode are used alone or as a group as a diagnostic marker of HF state. The MPA episode data set can be stored in memory associated with a time and date stamp. The MPA characteristics of each MPA data set in a series of MPA data sets collected over time can be compared or plotted to determine if a trend indicative of change in HF state is discernible.Type: GrantFiled: February 18, 2003Date of Patent: July 5, 2005Assignee: Medtronic, Inc.Inventors: Tommy D. Bennett, Lawrence J. Mulligan, Edwin G. Duffin, Robert C. Hamlen, Wael Abo-Auda
-
Patent number: 6865419Abstract: A system and method for determining mean pulmonary arterial pressure (MPAP) using a pressure sensor located within a ventricle of a heart, and a signal indicative of cardiac electrical activity such as an electrocardiogram (EGM) signal. The pressure may be sensed within the right and/or left ventricle using an implanted pressure sensor. The sensed pressure may be used to determine the Ventricular Systolic Pressure (VSP) and an estimated Pulmonary Arterial Diastolic pressure (ePAD). The VSP, ePAD, and time intervals associated with systole and diastole may then be used to obtain an MPAP that closely approximates mean pulmonary arterial pressure measured using a sensor located in the pulmonary artery.Type: GrantFiled: November 30, 2001Date of Patent: March 8, 2005Assignee: Medtronic, Inc.Inventors: Lawrence J. Mulligan, Tom D. Bennett
-
Publication number: 20040220638Abstract: Methods and devices for improving ventricular contractile status of a patient suitably exploit changes in ventricular pressure and/or dP/dtmax to provide and/or optimize a response to a patient. The ventricular pressure may be appropriately correlated to intracellular calcium regulation, which is indicative of contractile status. To assess ventricular contractile status, the device suitably observes a cardiac perturbation of the patient and measures force interval potentiation following the perturbation. The contractile potentiation can then be stored and/or quantified in the implantable medical device to determine the ventricular contractile status of the patient, and an appropriate response may be provided to the patient as a function of the ventricular contractile status. Examples of responses may include administration of drug or neuro therapies, modification of a pacing rate, or the like.Type: ApplicationFiled: April 30, 2003Publication date: November 4, 2004Applicant: Medtronic, Inc.Inventors: Lawrence J. Mulligan, Ursula Gebhardt
-
Publication number: 20040220639Abstract: Methods and devices for improving ventricular contractile status of a patient suitably exploit changes in ventricular pressure and/or dP/dtmax to provide and/or optimize a response to a patient. The ventricular pressure may be appropriately correlated to intracellular calcium regulation, which is indicative of contractile status. To assess ventricular contractile status, the device suitably observes a cardiac perturbation of the patient and measures force interval potentiation following the perturbation. The contractile potentiation can then be stored and/or quantified in the implantable medical device to determine the ventricular contractile status of the patient, and an appropriate response may be provided to the patient as a function of the ventricular contractile status. Examples of responses may include administration of drug or neuro therapies, modification of a pacing rate, or the like.Type: ApplicationFiled: April 30, 2003Publication date: November 4, 2004Applicant: Medtronic, Inc.Inventors: Lawrence J. Mulligan, Michael R.S. Hill, John E. Burnes
-
Patent number: 6810286Abstract: Provided are novel stimulatory device for the controlled production of angiogenic growth factors. More specifically, a subthreshold pulse generator is used for the local production of vascular endothelial growth factor.Type: GrantFiled: March 5, 2001Date of Patent: October 26, 2004Assignee: Medtronic, IncInventors: Maura G. Donovan, Orhan Soykan, D. Curtis Deno, Lawrence J. Mulligan, Brian C. A. Fernandes
-
Publication number: 20040186525Abstract: A hemodynamic status of a patient is determined in an implanted medical device (IMD) by observing a perturbation of the patient's heart, measuring heart rate turbulence resulting from the perturbation, and quantifying the heart rate turbulence to determine the hemodynamic status. The perturbation may be naturally-occurring, or may be generated by the implantable medical device. The patient's response to heart rate turbulence may also be used to provide a response to the patient, such as providing an alarm and/or administering a therapy. Heart rate turbulence may also be used to tune and/or optimize a device parameter such as A-V or V-V pacing intervals.Type: ApplicationFiled: March 20, 2003Publication date: September 23, 2004Inventors: John E. Burnes, Lawrence J. Mulligan, Michael R.S. Hill
-
Publication number: 20040162497Abstract: An implantable heart monitor (IHM) implanted in a patient's body having electrogram (EGM) sense electrodes coupled with EGM sense circuitry to generate sense events upon detection of cardiac depolarizations and a blood pressure measurement transducer disposed in a heart chamber and coupled with blood pressure measurement circuitry operates to assess heart failure state as a function of mechanical pulsus alternans (MPA). MPA episodes are detected, and MPA characteristics of the MPA episode are used alone or as a group as a diagnostic marker of HF state. The MPA episode data set can be stored in memory associated with a time and date stamp. The MPA characteristics of each MPA data set in a series of MPA data sets collected over time can be compared or plotted to determine if a trend indicative of change in HF state is discernible.Type: ApplicationFiled: February 18, 2003Publication date: August 19, 2004Inventors: Tommy D. Bennett, Lawrence J. Mulligan, Edwin G. Duffin, Robert C. Hamlen, Wael Abo-Auda