Patents by Inventor Lawrence Joseph Musetti

Lawrence Joseph Musetti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9260308
    Abstract: Process for producing nanomaterials such as graphenes, graphene composites, magnesium oxide, magnesium hydroxides and other nanomaterials by high heat vaporization and rapid cooling. In some of the preferred embodiments, the high heat is produced by an oxidation-reduction reaction of carbon dioxide and magnesium as the primary reactants, although additional materials such as reaction catalysts, control agents, or composite materials can be included in the reaction, if desired. The reaction also produces nanomaterials from a variety of other input materials, and by varying the process parameters, the type and morphology of the carbon nanoproducts and other nanoproducts can be controlled. The reaction products include novel nanocrystals of MgO (percilase) and MgAl2O4 (spinels) as well as composites of these nanocrystals with multiple layers of graphene deposited on or intercalated with them.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: February 16, 2016
    Assignee: Graphene Technologies, Inc.
    Inventors: Robert Wayne Dickinson, Oliver Douglas Ousterhout, Lawrence Joseph Musetti, Douglas Paul DuFaux
  • Publication number: 20150376012
    Abstract: Process for producing nanomaterials such as graphenes, graphene composites, magnesium oxide, magnesium hydroxides and other nanomaterials by high heat vaporization and rapid cooling. In some of the preferred embodiments, the high heat is produced by an oxidation-reduction reaction of carbon dioxide and magnesium as the primary reactants, although additional materials such as reaction catalysts, control agents, or composite materials can be included in the reaction, if desired. The reaction also produces nanomaterials from a variety of other input materials, and by varying the process parameters, the type and morphology of the carbon nanoproducts and other nanoproducts can be controlled. The reaction products include novel nanocrystals of MgO (percilase) and MgAl2O4 (spinels) as well as composites of these nanocrystals with multiple layers of graphene deposited on or intercalated with them.
    Type: Application
    Filed: September 4, 2015
    Publication date: December 31, 2015
    Inventors: Robert Wayne Dickinson, Oliver Douglas Ousterhout, Lawrence Joseph Musetti, Douglas Paul DuFaux
  • Publication number: 20150210558
    Abstract: Process for producing nanomaterials such as graphenes, graphene composites, magnesium oxide, magnesium hydroxides and other nanomaterials by high heat vaporization and rapid cooling. In some of the preferred embodiments, the high heat is produced by an oxidation-reduction reaction of carbon dioxide and magnesium as the primary reactants, although additional materials as reaction catalysts, control agents, or composite materials can be included in the reaction, if desired. The carbon dioxide and magnesium are combusted together in a reactor to produce nano-magnesium oxide, graphenes, graphene composites, and possibly other products which are then separated or excluded by suitable processes or reactions to provide the individual reaction products. The reaction is highly energetic, producing very high temperatures on the order of 5610° F. (3098° C.
    Type: Application
    Filed: February 5, 2015
    Publication date: July 30, 2015
    Inventors: Robert Wayne Dickinson, Jon K. Myers, Oliver Douglas Ousterhout, Lawrence Joseph Musetti, Douglas Paul DuFaux
  • Publication number: 20140262747
    Abstract: Process and apparatus for functionalizing and/or separating graphene particles and other nanomaterials in which graphene and other nanoparticles are placed in a pile on one of two opposing conductive surfaces that are charged with a high D.C. voltage so that material of a certain character is attracted to the other conducting surface. This process takes place in an enclosed chamber that has been flooded with a designated gas at ambient pressure, with the material attracted to the second conducting surface passing through the designated gas. The high energy field creates a condition such that the material remaining on the first conductive surface takes on atoms of the designated gas and material the going to the second surface is further exposed to and characterized by the designated gas.
    Type: Application
    Filed: March 17, 2014
    Publication date: September 18, 2014
    Applicant: Graphene Technologies, Inc.
    Inventors: Robert Wayne Dickinson, Donald Brookshire, JR., Lawrence Joseph Musetti, Theodore Joseph Musetti
  • Publication number: 20130295000
    Abstract: Process for producing nanomaterials such as graphenes, graphene composites, magnesium oxide, magnesium hydroxides and other nanomaterials by high heat vaporization and rapid cooling. In some of the preferred embodiments, the high heat is produced by an oxidation-reduction reaction of carbon dioxide and magnesium as the primary reactants, although additional materials such as reaction catalysts, control agents, or composite materials can be included in the reaction, if desired. The reaction also produces nanomaterials from a variety of other input materials, and by varying the process parameters, the type and morphology of the carbon nanoproducts and other nanoproducts can be controlled. The reaction products include novel nanocrystals of MgO (percilase) and MgAl2O4 (spinels) as well as composites of these nanocrystals with multiple layers of graphene deposited on or intercalated with them.
    Type: Application
    Filed: April 16, 2013
    Publication date: November 7, 2013
    Inventors: Robert Wayne Dickinson, Ben Wade Oakes Dickinson, III, Jon K. Myers, Oliver Douglas Ousterhout, Lawrence Joseph Musetti, Douglas Paul DuFaux
  • Patent number: 8420042
    Abstract: Process for producing nanomaterials such as graphenes, graphene composites, magnesium oxide, magnesium hydroxides and other nanomaterials by high heat vaporization and rapid cooling. In some of the preferred embodiments, the high heat is produced by an oxidation-reduction reaction of carbon dioxide and magnesium as the primary reactants, although additional materials such as reaction catalysts, control agents, or composite materials can be included in the reaction, if desired. The reaction also produces nanomaterials from a variety of other input materials, and by varying the process parameters, the type and morphology of the carbon nanoproducts and other nanoproducts can be controlled. The reaction products include novel nanocrystals of MgO (percilase) and MgAl2O4 (spinels) as well as composites of these nanocrystals with multiple layers of graphene deposited on or intercalated with them.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: April 16, 2013
    Assignee: High Temperature Physics, LLC
    Inventors: Robert Wayne Dickinson, Ben Wade Oakes Dickinson, III, Jon K. Myers, Oliver Douglas Ousterhout, Lawrence Joseph Musetti
  • Patent number: 8277145
    Abstract: An engineered, scalable underground containment system and method for storing compressed gases or liquids in permeable rock formations using conventional drilling techniques. The porosity and permeability of the formation may be enhanced to maximize reservoir capacity and increase the rate at which gases and liquids can be introduced into and removed from the reservoir. In some embodiments, layers of cap rock in the formation are utilized as containment barriers, and in some, containment barriers are constructed around the storage zones.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: October 2, 2012
    Assignee: SEQEnergy, LLC
    Inventors: Ben Wade Oakes Dickinson, III, Robert Wayne Dickinson, Oliver Douglas Ousterhout, Lawrence Joseph Musetti, Porter James Underwood, Ali Daneshy
  • Patent number: 8256992
    Abstract: Underground sequestration system and method in which a liquid or gas is stored in a sequestration zone of enhanced porosity in an underground geological formation, with a containment barrier around the sequestration zone. Conditions within the formation are monitored to verify the integrity of the sequestered substance, and any necessary repair or maintenance is done through wells that extend into the formation. In some disclosed embodiments, the porosity of the formation in the sequestration zone is enhanced by boreholes and laterals that are drilled with high velocity hydraulic cutting jets, and the sequestered liquid or gas is injected into the sequestration zone through the boreholes and laterals. Additional boreholes and laterals are employed in the containment barrier, and the barrier is formed of a thixotropic material that is injected into the formation through the additional boreholes and laterals.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: September 4, 2012
    Assignee: SEQEnergy, LLC
    Inventors: Ben Wade Oakes Dickinson, III, Robert Wayne Dickinson, Lawrence Joseph Musetti, Oliver Douglas Ousterhout
  • Patent number: 8256991
    Abstract: An engineered, scalable underground containment system and method for storing compressed gases or liquids in permeable rock formations using conventional drilling techniques. The porosity and permeability of the formation may be enhanced to maximize reservoir capacity and increase the rate at which gases and liquids can be introduced into and removed from the reservoir. In some embodiments, layers of cap rock in the formation are utilized as containment barriers, and in some, containment barriers are constructed around the storage zones.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: September 4, 2012
    Assignee: SEQEnergy, LLC
    Inventors: Ben Wade Oakes Dickinson, III, Robert Wayne Dickinson, Oliver Douglas Ousterhout, Lawrence Joseph Musetti, Porter James Underwood, Ali Daneshy
  • Publication number: 20120068124
    Abstract: Process for producing nanomaterials such as graphenes, graphene composites, magnesium oxide, magnesium hydroxides and other nanomaterials by high heat vaporization and rapid cooling. In some of the preferred embodiments, the high heat is produced by an oxidation-reduction reaction of carbon dioxide and magnesium as the primary reactants, although additional materials such as reaction catalysts, control agents, or composite materials can be included in the reaction, if desired. The reaction also produces nanomaterials from a variety of other input materials, and by varying the process parameters, the type and morphology of the carbon nanoproducts and other nanoproducts can be controlled. The reaction products include novel nanocrystals of MgO (percilase) and MgAl2O4 (spinels) as well as composites of these nanocrystals with multiple layers of graphene deposited on or intercalated with them.
    Type: Application
    Filed: September 20, 2011
    Publication date: March 22, 2012
    Inventors: Robert Wayne Dickinson, Ben Wade Oakes Dickinson, III, Jon K. Myers, Oliver Douglas Ousterhout, Lawrence Joseph Musetti
  • Publication number: 20100101789
    Abstract: An engineered, scalable underground containment system and method for storing compressed gases or liquids in permeable rock formations using conventional drilling techniques. The porosity and permeability of the formation may be enhanced to maximize reservoir capacity and increase the rate at which gases and liquids can be introduced into and removed from the reservoir. In some embodiments, layers of cap rock in the formation are utilized as containment barriers, and in some, containment barriers are constructed around the storage zones.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 29, 2010
    Inventors: Ben Wade Oakes Dickinson, III, Robert Wayne Dickinson, Oliver Douglas Ousterhout, Lawrence Joseph Musetti, Porter James Underwood, Ali Daneshy
  • Publication number: 20100098492
    Abstract: An engineered, scalable underground containment system and method for storing compressed gases or liquids in permeable rock formations using conventional drilling techniques. The porosity and permeability of the formation may be enhanced to maximize reservoir capacity and increase the rate at which gases and liquids can be introduced into and removed from the reservoir. In some embodiments, layers of cap rock in the formation are utilized as containment barriers, and in some, containment barriers are constructed around the storage zones.
    Type: Application
    Filed: October 20, 2009
    Publication date: April 22, 2010
    Inventors: Ben Wade Oakes Dickinson, III, Robert Wayne Dickinson, Oliver Douglas Ousterhout, Lawrence Joseph Musetti, Porter James Underwood, Ali Daneshy
  • Publication number: 20090220303
    Abstract: Underground sequestration system and method in which a liquid or gas is stored in a sequestration zone of enhanced porosity in an underground geological formation, with a containment barrier around the sequestration zone. Conditions within the formation are monitored to verify the integrity of the sequestered substance, and any necessary repair or maintenance is done through wells that extend into the formation. In some disclosed embodiments, the porosity of the formation in the sequestration zone is enhanced by boreholes and laterals that are drilled with high velocity hydraulic cutting jets, and the sequestered liquid or gas is injected into the sequestration zone through the boreholes and laterals. Additional boreholes and laterals are employed in the containment barrier, and the barrier is formed of a thixotropic material that is injected into the formation through the additional boreholes and laterals.
    Type: Application
    Filed: March 2, 2009
    Publication date: September 3, 2009
    Inventors: Ben Wade Oakes Dickinson, III, Robert Wayne Dickinson, Lawrence Joseph Musetti, Oliver Douglas Ousterhout