Patents by Inventor Lawrence Meyers

Lawrence Meyers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090107441
    Abstract: As one example, a method is provided for controlling a relative amount of air and fuel that is provided to a combustion chamber of an internal combustion engine. The method comprises adjusting a relative amount of air and fuel provided to the combustion chamber during an engine start based on a volatility of the fuel identified during a previous engine start. As another example, a vehicle engine system is provided, comprising: an internal combustion engine including at least one combustion chamber; a fuel injector configured to provide fuel to the combustion chamber; a fuel system operatively coupled with the fuel injector including a fuel storage tank; a control system configured to vary an amount of fuel injected into the combustion chamber during an engine start based on a speed response of the engine during a previous engine run-up from rest and a change in an amount of fuel stored in the fuel storage tank before the engine start.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 30, 2009
    Applicant: FORD GLOBAL TECHNOLOGIES, LLC
    Inventors: Philip William Husak, Daniel Lawrence Meyer, Venkateswaran Nallaperumal, Mike Ryan Scannell
  • Publication number: 20080313779
    Abstract: A new variety of miniature rose suitable for garden decoration, having single-petaled flowers of cardinal red coloration and a small white eye zone.
    Type: Application
    Filed: June 18, 2007
    Publication date: December 18, 2008
    Inventor: Lawrence Meyer
  • Publication number: 20080017712
    Abstract: Magnetic stripe readers are disclosed that are configured to extract information from magnetic media and encrypt part of the extracted information. Embodiments of magnetic stripe readers include measures to resist tampering and inputs to receive unencrypted information from input devices. One embodiment includes a housing containing a magnetic reading head connected to a decoder circuit that is connected to an encryption engine. The magnetic reading head generates a signal indicative of a magnetic field. The decoder circuit is configured to extract data from the output of the magnetic reading head and the encryption engine is configured to encrypt a portion of the extracted data and the encryption engine is configured to pass a portion of the extracted data unencrypted.
    Type: Application
    Filed: January 16, 2007
    Publication date: January 24, 2008
    Inventors: Annemarie Hart, Terrence Benson, Lawrence Meyers
  • Publication number: 20080007420
    Abstract: The present invention provides for a simplified remote control device for use by small children and others without supervision or assistance. Each button of a remote control device may be programmed to correspond to a specific track or chapter of a DVD or to a specific channel for a television. A menu card that slides in and out of a slot behind the remote control unit's buttons may be utilized to change the appearance of the remote control unit, such that the appearance may be tailored to the content of specific DVDs and the like. Other embodiments of the present invention provide for a simplified remote control device that may be used by seniors, or used by personnel in specialized settings such as sports bars.
    Type: Application
    Filed: June 25, 2007
    Publication date: January 10, 2008
    Applicant: TALKING DOG, LP
    Inventors: Lawrence Meyers, John Florence
  • Publication number: 20070228158
    Abstract: Systems and methods for personalizing data card are disclosed. One embodiment includes a card receiver configured to receive one or more data cards, a control system connected to the card receiver, the control system configured to receive personalization information, an encoder system connected to the control system, the encoder system configured to encode the one or more data cards with at least some portion of the personalization information, a card reader connected to the control system, the card reader configured to read magnetic fingerprint information from the one or more data cards, and the control system configured to store the magnetic fingerprint information.
    Type: Application
    Filed: November 13, 2006
    Publication date: October 4, 2007
    Inventors: Bradley Brown, David Fletcher, Richard Burchill, Annmarie Hart, Ruth Deignan, Lawrence Meyers
  • Publication number: 20070110958
    Abstract: This invention is an advance in coating chemistry, curing technology, related apparatus and the products made thereby. The invention encompasses a substrate bonded to a coating cured, at least in part, cationically by a light having a wavelength in a range of 100 nm to 1200 nm and an intensity in a range of 0.0003 W/cm2/nm to 0.05 W/cm2/nm. Methods and systems for coating substrates and curing the coated products are encompassed. The invention encompasses apparatus and ink jet printers utilizing this curing technology.
    Type: Application
    Filed: November 16, 2005
    Publication date: May 17, 2007
    Inventors: Lawrence Meyers, John LaFleche, Russell Croft, Charles Dooley
  • Patent number: 7210455
    Abstract: A system is described using a fuel quality sensor for controlling various aspects of engine operation. In particular, an acoustic wave sensor is utilized to measure viscosity and density of gasoline fuels. This measurement is utilized to predict engine combustion quality during an engine start. Based on the prediction, the method adjusts engine operating parameters (such as fuel injection amount and ignition timing) to achieve improved vehicle driveability and engine combustion.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: May 1, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: Jacobus Hendrik Visser, Allan Joseph Kotwicki, Allan J. Lippa, Carina Eva Irene Bjornsson, Carol S. Smith, Daniel Lawrence Meyer, John D. Russell, Michael John Cullen, Michael Howard Parsons, Philip William Husak
  • Patent number: 7069720
    Abstract: A method to deliver fuel during a start for an internal combustion engine is described. The method provides individual cylinder fuel control based on the number of fueled cylinder events. The method offers improved engine emissions while maintaining engine run-up performance.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: July 4, 2006
    Assignee: Ford Global Techologies, LLC
    Inventors: Ben Allen Strayer, Daniel Lawrence Meyer, Frank Gonzales, Jr., Garth Michael Meyer, Michael Smokovitz, Donald James Lewis
  • Publication number: 20050217050
    Abstract: A trowel blade includes a pre-finished, hardened and tempered blade having at least two apertures formed therethrough. Each aperture has a cross section tapering from a larger opening in a bottom of the blade to a smaller opening in a top of the blade. At least two cleats are also provided, each cleat being disposed in one of the apertures and each cleat having a lower portion, deformed within the aperture to have a frusto-conical shape mating with internal walls of the aperture. Each cleat also has an upper, inverted frusto-conical portion having a lower surface mating with an upper surface of the blade, and an upper shoulder. The upper shoulder of the upper portion extends upwardly from the lower surface of the upper portion and outwardly from a longitudinal axis of the cleat. The cleats are formed of an integral, rigid material and are collectively configured to provide a substantially rigid interface between the pre-finished blade and a removable handle of the pre-finished blade.
    Type: Application
    Filed: April 1, 2004
    Publication date: October 6, 2005
    Inventor: Lawrence Meyers
  • Patent number: 6935311
    Abstract: A system is described using a fuel quality sensor for controlling various aspects of engine operation. In particular, an acoustic wave sensor is utilized to measure viscosity and density of gasoline fuels. This measurement is utilized to predict engine combustion quality during an engine start. Based on the prediction, the method adjusts engine operating parameters (such as fuel injection amount and ignition timing) to achieve improved vehicle driveability and engine combustion.
    Type: Grant
    Filed: October 9, 2002
    Date of Patent: August 30, 2005
    Assignee: Ford Global Technologies, LLC
    Inventors: Jacobus Hendrik Visser, Allan Joseph Kotwicki, Allan J. Lippa, Carina Eva Irene Bjornsson, Carol S. Smith, Daniel Lawrence Meyer, John D. Russell, Michael Howard Parsons, Philip William Husak
  • Patent number: 6931840
    Abstract: A method to deliver fuel during a start for an internal combustion engine is described. The method provides individual cylinder fuel control based on the number of fueled cylinder events. The method offers improved engine emissions while maintaining engine run-up performance.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: August 23, 2005
    Assignee: Ford Global Technologies, LLC
    Inventors: Ben Allen Strayer, Daniel Lawrence Meyer, Frank Gonzales, Jr., Garth Michael Meyer, Michael Smokovitz, Donald James Lewis
  • Publication number: 20040163629
    Abstract: A method to deliver fuel during a start for an internal combustion engine is described. The method provides individual cylinder fuel control based on the number of fueled cylinder events. The method offers improved engine emissions while maintaining engine run-up performance.
    Type: Application
    Filed: February 26, 2003
    Publication date: August 26, 2004
    Inventors: Ben Allen Strayer, Daniel Lawrence Meyer, Frank Gonzales, Garth Michael Meyer, Michael Smokovitz, Donald James Lewis
  • Publication number: 20040069273
    Abstract: A system is described using a fuel quality sensor for controlling various aspects of engine operation. In particular, an acoustic wave sensor is utilized to measure viscosity and density of gasoline fuels. This measurement is utilized to predict engine combustion quality during an engine start. Based on the prediction, the method adjusts engine operating parameters (such as fuel injection amount and ignition timing) to achieve improved vehicle driveability and engine combustion.
    Type: Application
    Filed: October 9, 2002
    Publication date: April 15, 2004
    Applicant: Ford Global Technologies, Inc.
    Inventors: Jacobus Hendrik Visser, Allan Joseph Kotwicki, Allan J. Lippa, Carina Eva Irene Bjornsson, Carol S. Smith, Daniel Lawrence Meyer, John D. Russell, Michael Howard Parsons, Philip William Husak
  • Patent number: 6460513
    Abstract: A system (12) and method for controlling the injection of fuel into a cylinder (14) of an internal combustion engine (10) are provided. The system (12) includes a fuel injector (22), a temperature sensor (48), and an electronic control unit (ECU) (50). The fuel is parsed into a plurality of components based on the boiling points of elements of the fuel. ECU (50) stores mass fraction values for each component relative to the total mass of a sample of the fuel along with vaporization rates for each component. These values are used by the ECU (50) to account for different vaporization rates among fuel elements. In accordance with the invention, ECU (50) is further configured to adjust the mass fraction values responsive to the combustion air-fuel ratio and the engine temperature to account for the different volatility characteristics of various fuels.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: October 8, 2002
    Assignee: Ford Global Technologies, Inc.
    Inventors: Daniel Lawrence Meyer, David Karl Trumpy, Soduk Lee
  • Patent number: 6360531
    Abstract: A method and system 10 for reducing cold-start emissions of an automotive vehicle 12 having an internal combustion engine 26. System 10 includes a main controller or control system 14, a variable valve timing system 16, an ignition system 18, a fuel metering system 20, and vehicle operating condition sensors 22. Controller 14 detects cold-start conditions based on signals received from sensors 22, and in response to such a detection, controller 14 generates command signals to said variable valve timing system 16, to said ignition system 18, and to said fuel metering system 20, effective to respectively alter valve timing, spark timing, and said air/fuel delivery of engine 26 in a manner which synergistically increases air/fuel enleanment limits, improves combustion characteristics, and increases exhaust gas temperature, thereby reducing cold-start emissions.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: March 26, 2002
    Assignee: Ford Global technologies, Inc.
    Inventors: Timo Aimo Waltteri Wiemero, Daniel Lawrence Meyer, Philip William Husak, William Francis Stockhausen
  • Patent number: 6161531
    Abstract: Air/fuel and ignition control of engine are used to more rapidly heat-up a catalytic converter. A control system generates a fuel command for fuel delivery to the engine based upon at least an amount of air inducted into the engine. The fuel command is corrected by a correction value so that the exhaust gas mixture is shifted more closely to the preselected air/fuel ratio. Correction values are adaptively learned during warm engine operation from a feedback signal derived from an exhaust gas oxygen sensor. Initial warm correction values are stored in a reference table. At engine shut-off the difference between the warm correction values and the reference table are stored in an offset correction table. This offset correction table is then used during the next engine cold start to schedule the open-loop air/fuel ratio by using the cold adaptive table values which have been modified by the values stored in the corresponding cells of the offset correction value table.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: December 19, 2000
    Assignee: Ford Motor Company
    Inventors: Douglas Ray Hamburg, Daniel Lawrence Meyer, William Earl Leisenring
  • Patent number: 6131439
    Abstract: A catalyst system employed in the exhaust stream of an internal combustion engine (10) wherein the catalyst deterioration is monitored by an engine controller (26) connected to a first oxygen sensor (22) mounted upstream of a catalyst (18) and a second oxygen sensor (24) mounted downstream. After a cold start of the engine (10) a calibration of the first and second sensors is conducted, to assure accuracy between the two sensors and determine if one of the sensors has failed, and also a light-off time for the catalyst (18) is determined as one way to measure the deterioration of the catalyst. After the engine (10) has warmed up to operating temperature, a test is run to determine the ability of the catalyst (18) to store oxygen therein, being another indication of catalyst deterioration.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: October 17, 2000
    Assignee: Ford Global Technologies, Inc.
    Inventors: Douglas Ray Hamburg, Daniel Lawrence Meyer
  • Patent number: 6067965
    Abstract: A method and system for determining a quantity of fuel to be injected into a multi-cylinder, internal combustion engine during each combustion event of the engine includes an air flow sensor for sensing a quantity of air flowing through the engine. An electronic control unit is operative to determine a desired combustion fuel quantity based on the quantity of air flowing through the engine and determine a desired fuel injection quantity based on a previous fuel injection quantity delivered during a previous combustion event and the desired combustion fuel quantity. The control unit is further operative to control the amount of fuel injected into the engine for the current combustion event based on the desired fuel injection quantity.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: May 30, 2000
    Assignee: Ford Global Technologies, Inc.
    Inventors: David Karl Trumpy, Daniel Lawrence Meyer, Eric Warren Curtis, Leighton Ira Davis, Jr.
  • Patent number: 6050128
    Abstract: A catalyst system employed in the exhaust stream of an internal combustion engine (10) wherein the catalyst deterioration is monitored by an engine controller (26) connected to a first oxygen sensor (22) mounted upstream of a catalyst (18) and a second oxygen sensor (24) mounted downstream. After a cold start of the engine (10) a light-off time for the catalyst (18) is determined as one way to measure the deterioration of the catalyst. After the engine (10) has warmed up to operating temperature, a test is run to determine the ability of the catalyst (18) to store oxygen therein, being another indication of catalyst deterioration.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: April 18, 2000
    Assignee: Ford Global Technologies, Inc.
    Inventors: Douglas Ray Hamburg, Daniel Lawrence Meyer
  • Patent number: 5957994
    Abstract: A method for accelerating the rotational speed of a crankshaft of an internal combustion engine having a plurality of cylinders each having a spark plug wherein a predetermined amount of delivered fuel is to be combusted at a firing time within each of the plurality of cylinders with each rotation of the camshaft or crankshaft based on an acceleration input made by an operator includes the step of receiving the accelerating input, measuring the rotational speed of the crankshaft, defining an expected engine speed based on the acceleration input, calculating a speed error as the rotational speed of the crankshaft less the expected engine speed, calculating engine acceleration and adjusting the predetermined amount of fuel delivered to be combusted in each of the plurality of cylinders to reduce the speed error when the speed error is a function of the instantaneous engine speed. The preferred embodiment is implemented using fuzzy logic.
    Type: Grant
    Filed: August 12, 1996
    Date of Patent: September 28, 1999
    Assignee: Ford Global Technologies, Inc.
    Inventors: Daniel Lawrence Meyer, Philip William Husak, Michael John Cullen, Steven Ray Whittier, Julia Marie Giuliano, Anupam Narula