Patents by Inventor Lawrence Shah

Lawrence Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230111486
    Abstract: In one embodiment, a lidar system includes a light source configured to emit pulses of light, where each emitted pulse of light includes a spectral signature of multiple different spectral signatures. The lidar system also includes a receiver configured to detect a received pulse of light, the received pulse of light including light from one of the emitted pulses of light scattered by a target located a distance from the lidar system. The emitted pulse of light includes one of the spectral signatures. The receiver includes a detector configured to produce a photocurrent signal corresponding to the received pulse of light, a frequency-detection circuit configured to determine, based on the photocurrent signal, a spectral signature of the received pulse of light, and a pulse-detection circuit configured to determine, based on the photocurrent signal, a time-of-arrival of the received pulse of light.
    Type: Application
    Filed: October 7, 2022
    Publication date: April 13, 2023
    Inventors: Lawrence Shah, Zachary Ronald Dylan Thomas Bush, Elias Soto, Alex Michael Sincore, Joseph G. LaChapelle, Stephen D. Gaalema, Jason M. Eichenholz
  • Publication number: 20230028608
    Abstract: A system includes a light source, an optical splitter, and a pulse-energy measurement circuit. The light source is configured to generate an emitted beam of light that includes an emitted pulse of light. The optical splitter is configured to split the emitted beam of light to produce at least (i) a test beam of light that includes a test pulse of light, the test pulse of light including a first portion of the emitted pulse of light and (ii) an output beam of light that includes an output pulse of light, the output pulse of light including a second portion of the emitted pulse of light allowed to at least in part exit the system. The pulse-energy measurement circuit is configured to receive the test pulse of light and determine a numerical value corresponding to an individual energy amount of the test pulse of light.
    Type: Application
    Filed: July 21, 2022
    Publication date: January 26, 2023
    Inventors: Lawrence Shah, David H. Minasi
  • Publication number: 20220334231
    Abstract: In one embodiment, a lidar system includes a light source configured to emit (i) local-oscillator light and (ii) pulses of light. The lidar system also includes a receiver configured to detect the local-oscillator light and a received pulse of light, the received pulse of light including a portion of one of the emitted pulses of light scattered by a target located a distance from the lidar system. The receiver includes a detector configured to produce a photocurrent signal corresponding to a coherent mixing of the local-oscillator light and the received pulse of light. The detector includes a first input side and a second input side located opposite the first input side, where the received pulse of light is incident on the first input side of the detector, and the local-oscillator light is incident on the second input side of the detector.
    Type: Application
    Filed: April 19, 2022
    Publication date: October 20, 2022
    Inventors: Lawrence Shah, Alex Michael Sincore, Roger S. Cannon, Joseph G. LaChapelle, Stephen D. Gaalema, Jason M. Eichenholz
  • Publication number: 20220043127
    Abstract: In one embodiment, a lidar system includes a light source configured to emit an optical signal and a receiver that includes one or more detectors configured to detect a portion of the emitted optical signal scattered by a target located a distance from the lidar system. The lidar system also includes a photonic integrated circuit (PIC) that includes an input optical element configured to receive the portion of the scattered optical signal and couple the portion of the scattered optical signal into an input optical waveguide. The input optical waveguide is one of one or more optical waveguides of the PIC configured to convey the portion of the scattered optical signal to the one or more detectors of the receiver. The input optical element includes a grating coupler and a tapered optical waveguide.
    Type: Application
    Filed: August 16, 2021
    Publication date: February 10, 2022
    Inventors: Joseph G. LaChapelle, Jason M. Eichenholz, Alex Michael Sincore, Lawrence Shah
  • Publication number: 20220043115
    Abstract: In one embodiment, a light source is configured to emit an optical signal. The light source includes a seed laser diode configured to produce a seed optical signal and a semiconductor optical amplifier (SOA) configured to amplify the seed optical signal to produce the emitted optical signal. The light source also includes an optical isolator disposed between the seed laser diode and the SOA, where the optical isolator is configured to (i) transmit the seed optical signal to the SOA and (ii) reduce an amount of light that propagates from the SOA toward the seed laser diode.
    Type: Application
    Filed: February 24, 2021
    Publication date: February 10, 2022
    Inventors: Joseph G. LaChapelle, Jason M. Eichenholz, Alex Michael Sincore, Lawrence Shah
  • Publication number: 20220043202
    Abstract: In one embodiment, a light source is configured to emit an optical signal. The light source includes a seed laser diode configured to produce a seed optical signal and a semiconductor optical amplifier (SOA) configured to amplify the seed optical signal to produce the emitted optical signal. The SOA includes an optical waveguide extending along a longitudinal direction from an input end of the SOA to an output end of the SOA. The optical waveguide is configured to guide and provide optical gain to the seed optical signal while the seed optical signal propagates in the longitudinal direction along the optical waveguide from the input end to the output end. The SOA also includes a Bragg grating disposed parallel to the optical waveguide, where the Bragg grating includes a region of the SOA having a refractive index that varies along the longitudinal direction.
    Type: Application
    Filed: February 24, 2021
    Publication date: February 10, 2022
    Inventors: Joseph G. LaChapelle, Jason M. Eichenholz, Lawrence Shah
  • Patent number: 11119219
    Abstract: In one embodiment, a lidar system includes a light source configured to emit an optical signal and a receiver that includes one or more detectors configured to detect a portion of the emitted optical signal scattered by a target located a distance from the lidar system. The lidar system also includes a photonic integrated circuit (PIC) that includes an input optical element configured to receive the portion of the scattered optical signal and couple the portion of the scattered optical signal into an input optical waveguide. The input optical waveguide is one of one or more optical waveguides of the PIC configured to convey the portion of the scattered optical signal to the one or more detectors of the receiver. The lidar system further includes a processor configured to determine the distance from the lidar system to the target.
    Type: Grant
    Filed: February 24, 2021
    Date of Patent: September 14, 2021
    Assignee: Luminar, LLC
    Inventors: Joseph G. LaChapelle, Jason M. Eichenholz, Alex Michael Sincore, Lawrence Shah
  • Publication number: 20210088657
    Abstract: In one embodiment, a lidar system includes a light source configured to emit an optical signal. The light source includes a seed laser diode configured to produce a seed optical signal and a semiconductor optical amplifier (SOA) configured to amplify the seed optical signal to produce an amplified seed optical signal, where the emitted optical signal includes the amplified seed optical signal. The light source further includes an electronic driver configured to supply electrical current to the seed laser diode and electrical current to the SOA. The lidar system also includes a receiver configured to detect a portion of the emitted optical signal scattered by a target located a distance from the lidar system. The lidar system further includes a processor configured to determine the distance from the lidar system to the target.
    Type: Application
    Filed: November 23, 2020
    Publication date: March 25, 2021
    Inventors: Lawrence Shah, Jason M. Eichenholz, Joseph G. LaChapelle, Alex Michael Sincore, Cheng Zhu
  • Patent number: 10845480
    Abstract: In one embodiment, a lidar system includes a light source configured to emit an optical signal. The light source includes a seed laser diode configured to produce a seed optical signal and a semiconductor optical amplifier (SOA) configured to amplify the seed optical signal to produce an amplified seed optical signal, where the emitted optical signal includes the amplified seed optical signal. The lidar system also includes a scanner configured to direct the emitted optical signal into a field of regard of the lidar system and a receiver configured to detect a portion of the emitted optical signal scattered by a target located a distance from the lidar system. The lidar system further includes a processor configured to determine the distance from the lidar system to the target.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: November 24, 2020
    Assignee: Luminar Technologies, Inc.
    Inventors: Lawrence Shah, Jason M. Eichenholz, Joseph G. LaChapelle, Alex Michael Sincore, Cheng Zhu
  • Patent number: 10348051
    Abstract: In one embodiment, a fiber-optic amplifier includes an optical gain fiber configured to amplify input light received from a seed laser. The optical gain fiber includes a first gain section configured to: receive the seed-laser input light and co-propagating pump light; and amplify the seed-laser input light as it propagates along the first gain section. The seed-laser input light and the co-propagating pump light propagate along the first gain section in a same direction. The optical gain fiber also includes a second gain section configured to: receive the amplified input light from the first gain section; receive counter-propagating pump light; and further amplify the amplified input light as it propagates along the second gain section. The amplified input light and the counter-propagating pump light propagate along the second gain section in opposite directions. The fiber-optic amplifier also includes a first pump laser diode and a second pump laser diode.
    Type: Grant
    Filed: May 18, 2018
    Date of Patent: July 9, 2019
    Assignee: Luminar Technologies, Inc.
    Inventors: Lawrence Shah, Alain Villeneuve, Cheng Zhu, Laurance S. Lingvay
  • Patent number: 10256597
    Abstract: The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: April 9, 2019
    Assignee: IMRA AMERICA, INC.
    Inventors: Donald J. Harter, Gyu C. Cho, Zhenlin Liu, Martin E. Fermann, Xinhua Gu, Salvatore F. Nati, Lawrence Shah, Ingmar Hartl, Mark Bendett
  • Publication number: 20170179676
    Abstract: The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
    Type: Application
    Filed: February 22, 2017
    Publication date: June 22, 2017
    Applicant: IMRA AMERICA, INC.
    Inventors: Donald J. HARTER, Gyu C. CHO, Zhenlin LIU, Martin E. FERMANN, Xinhua GU, Salvatore F. NATI, Lawrence SHAH, Ingmar HARTL, Mark BENDETT
  • Patent number: 9590386
    Abstract: The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: March 7, 2017
    Assignee: IMRA AMERICA, INC.
    Inventors: Donald J. Harter, Gyu C. Cho, Zhenlin Liu, Martin E. Fermann, Xinhua Gu, Salvatore F. Nati, Lawrence Shah, Ingmar Hartl, Mark Bendett
  • Patent number: 9321126
    Abstract: Various embodiments may be used for laser-based modification of target material of a workpiece while advantageously achieving improvements in processing throughput and/or quality. Embodiments of a method of processing may include focusing and directing laser pulses to a region of the workpiece at a pulse width sufficiently short so that material is efficiently removed by nonlinear optical absorption from the region and a quantity of heat affected zone and thermal stress on the material within the region, proximate to the region, or both is reduced relative to a quantity obtainable using a laser with longer pulses. In at least one embodiment, an ultrashort pulse laser system may include at least one of a fiber amplifier or fiber laser. Various embodiments are suitable for at least one of dicing, cutting, scribing, and forming features on or within a composite material.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: April 26, 2016
    Assignee: IMRA America, Inc.
    Inventors: Jingzhou Xu, Jin Young Sohn, Gyu Cheon Cho, Lawrence Shah
  • Patent number: 9147989
    Abstract: A femtosecond laser based laser processing system having a femtosecond laser, frequency conversion optics, beam manipulation optics, target motion control, processing chamber, diagnostic systems and system control modules. The femtosecond laser based laser processing system allows for the utilization of the unique heat control in micromachining, and the system has greater output beam stability, continuously variable repetition rate and unique temporal beam shaping capabilities.
    Type: Grant
    Filed: December 9, 2013
    Date of Patent: September 29, 2015
    Assignee: IMRA AMERICA, INC.
    Inventors: Lawrence Shah, James M. Bovatsek, Alan Y. Arai, Tadashi Yamamoto, Rajesh S. Patel, Donald J. Harter
  • Patent number: 8995029
    Abstract: Systems and methods for providing laser texturing of solid substrates are disclosed. The texturing may be used to provide grayscale images obtainable from substrates, which may include steel, aluminum, glass, and silicon. In some embodiments, images may be obtainable from the substrate by modifying the reflective, diffractive, and/or absorptive features of the substrate or the substrate surface by forming random, periodic, and/or semi-periodic micro-structure features on the substrate (or substrate surface) by an ultrafast laser pulse train. The ultrafast pulse train may be modulated in order to vary, for example, optical exposure time, pulse train intensity, laser polarization, laser wavelength, or a combination of the aforementioned. The ultrafast pulse train and the substrate may be scanned with respect to each other to provide different optical energies to different regions of the substrate (or substrate surface).
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: March 31, 2015
    Assignee: IMRA America, Inc.
    Inventors: Lawrence Shah, Martin E. Fermann
  • Publication number: 20140376084
    Abstract: The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
    Type: Application
    Filed: September 10, 2014
    Publication date: December 25, 2014
    Applicant: IMRA AMERICA, INC.
    Inventors: Donald J. HARTER, Gyu C. CHO, Zhenlin LIU, Martin E. FERMANN, Xinhua GU, Salvatore F. NATI, Lawrence SHAH, Ingmar HARTL, Mark BENDETT
  • Patent number: 8896912
    Abstract: A method for wavelength tunable output from a broadband spectrum using a quasi phase-matched optical parametric amplifier/difference frequency generator (CQPM OPA/DFG)-based apparatus involves changing the relative timing of a pump pulse with respect to a seed pulse. The temporal variation varies the location of the spatial/temporal overlap of the spectrally narrow pump pulse over the spectrally broad seed spectrum occurring within the CQPM nonlinear medium. This overlap position determines the portion of the seed pulse that is phase-matched as the signal in the OPA or the seed for DFG. Piezo-electric fiber stretchers may be employed to vary the relative pulse timing and enables tuning of the output from the OPA or DFG without the use of any moving parts. Associated apparatus is disclosed.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: November 25, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: Lawrence Shah, Martin C. Richardson, Konstantin Vodopyanov
  • Publication number: 20140312469
    Abstract: Various embodiments may be used for laser-based modification of target material of a workpiece while advantageously achieving improvements in processing throughput and/or quality. Embodiments of a method of processing may include focusing and directing laser pulses to a region of the workpiece at a pulse repetition rate sufficiently high so that material is efficiently removed from the region and a quantity of unwanted material within the region, proximate to the region, or both is reduced relative to a quantity obtainable at a lower repetition rate. Embodiments of an ultrashort pulse laser system may include a fiber amplifier or fiber laser. Various embodiments are suitable for at least one of dicing, cutting, scribing, and forming features on or within a semiconductor substrate. Workpiece materials may include metals, inorganic or organic dielectrics, or any material to be micromachined with femtosecond, picosecond, and/or nanosecond pulses.
    Type: Application
    Filed: June 30, 2014
    Publication date: October 23, 2014
    Inventors: Lawrence Shah, Gyu Cheon Cho, Jingzhou Xu
  • Patent number: 8855151
    Abstract: The invention describes classes of robust fiber laser systems usable as pulse sources for Nd: or Yb: based regenerative amplifiers intended for industrial settings. The invention modifies adapts and incorporates several recent advances in FCPA systems to use as the input source for this new class of regenerative amplifier.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: October 7, 2014
    Assignee: Imra America, Inc.
    Inventors: Donald J. Harter, Gyu C. Cho, Zhenlin Liu, Martin E. Fermann, Xinhua Gu, Salvatore F. Nati, Lawrence Shah, Ingmar Hartl, Mark Bendett