Patents by Inventor Lawrence Wade

Lawrence Wade has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7314514
    Abstract: The invention relates to energy storage devices such as capacitors and supercapacitors and non-aqueous solvent systems suitable for use as an electrolyte solvent therein. Devices incorporating the solvent system are suitable for use in, for example, wireless devices or automotive applications at high temperatures with minimal, if any mass loss. The solvent system has at least one low boiling component (preferably a nitrile, eg acetonitrile) at least one high boiling component compatible with said low boiling component (preferably lactones, eg ?-butyrolactone and/or organic carbonates eg ethylene carbonate or propylene carbonate); and wherein the components are selected in an amount such that said non-aqueous solvent system does not boil at the boiling point of the low viscosity solvent alone but has a boiling point greater than said low viscosity solvent alone.
    Type: Grant
    Filed: March 19, 2003
    Date of Patent: January 1, 2008
    Assignee: Cap-XX Limited
    Inventors: Calum John Drummond, Hung Chi Nguyen, Timothy Lawrence Wade
  • Publication number: 20070152144
    Abstract: Methods and systems for operating an apertureless microscope for observing one or more features to a molecular sensitivity on objects are described. More particularly, the method includes moving a tip of a probe coupled to a cantilever in a vicinity of a feature of a sample, which emits one or more photons at a detected rate relative to a background rate of the sample based upon the presence of the tip of the probe in the vicinity of the feature. The method modifies the detected rate of the feature of the sample, whereupon the modifying of the detected rate causes the feature of the sample to enhance relative to background rate of the feature.
    Type: Application
    Filed: July 12, 2005
    Publication date: July 5, 2007
    Applicant: California Institute of Technology
    Inventors: Stephen Quake, Guillaume Lessard, Lawrence Wade, Jordan Gerton
  • Patent number: 7211795
    Abstract: A method for fabricating assembled structures. The method includes providing a tip structure, which has a first end, a second end, and a length defined between the first end and the second end. The second end is a free end. The method includes attaching a nano-sized structure along a portion of the length of the tip structure to extend a total length of the tip structure to include the length of the tip structure and a first length associated with the nano-sized structure. The method includes shortening the nano-sized structure from the first length to a second length. The method also includes pushing the nano-sized structure in a direction parallel to the second length to reduce the second length to a third length of the nano-sized structure along the direction parallel to the second length to cause the nano-sized structure to move along a portion of the length of the tip structure.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: May 1, 2007
    Assignee: California Institute of Technology
    Inventors: Charles Patrick Collier, Ma Ziyang, Stephen R. Quake, Ian R. Shapiro, Lawrence Wade
  • Publication number: 20060246467
    Abstract: A device comprising an array of active regions for use in reacting one or more species in at least two of the active regions in a sequential process, e.g., sequential reactions. The device has a transparent substrate member, which has a surface region. The device has a silane material overlying the surface region. The device has a first active region formed overlying a first portion of the silane material. In a specific embodiment, the first active region has a first dimension of less than 1 micron in size and has one or more first molecules capable of binding to the first portion of the silane material. In a specific embodiment, the device has a second active region formed overlying a second portion of the silane material. The second active region has a second dimension of less than 1 micron in size and has one or more second molecules capable of binding to the second portion of the active region.
    Type: Application
    Filed: November 14, 2005
    Publication date: November 2, 2006
    Applicant: California Institute of Technology
    Inventors: Lawrence Wade, Charles Collier
  • Publication number: 20050269509
    Abstract: A method for fabricating assembled structures. The method includes providing a tip structure, which has a first end, a second end, and a length defined between the first end and the second end. The second end is a free end. The method includes attaching a nano-sized structure along a portion of the length of the tip structure to extend a total length of the tip structure to include the length of the tip structure and a first length associated with the nano-sized structure. The method includes shortening the nano-sized structure from the first length to a second length. The method also includes pushing the nano-sized structure in a direction parallel to the second length to reduce the second length to a third length of the nano-sized structure along the direction parallel to the second length to cause the nano-sized structure to move along a portion of the length of the tip structure.
    Type: Application
    Filed: January 27, 2005
    Publication date: December 8, 2005
    Applicant: California Institute of Technology
    Inventors: Charles Collier, Ma Ziyang, Stephen Quake, Ian Shapiro, Lawrence Wade
  • Publication number: 20050191427
    Abstract: Embodiments in accordance with the present invention relate to techniques for the growth and attachment of single wall carbon nanotubes (SWNT), facilitating their use as robust and well-characterized tools for AFM imaging and other applications. In accordance with one embodiment, SWNTs attached to an AFM tip can function as a structural scaffold for nanoscale device fabrication on a scanning probe. Such a probe can trigger, with nanometer precision, specific biochemical reactions or conformational changes in biological systems. The consequences of such triggering can be observed in real time by single-molecule fluorescence, electrical, and/or AFM sensing. Specific embodiments in accordance with the present invention utilize sensing and manipulation of individual molecules with carbon nanotubes, coupled with single-molecule fluorescence imaging, to allow observation of spectroscopic signals in response to mechanically induced molecular changes.
    Type: Application
    Filed: February 20, 2004
    Publication date: September 1, 2005
    Applicant: California Institute of Technology
    Inventors: Lawrence Wade, Ian Shapiro, Charles Collier, Maria Esplandiu, Vern Bittner, Konstantinos Giapis