Patents by Inventor Laxmi WARAD
Laxmi WARAD has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12281893Abstract: A system to characterize a film layer within a measurement box is disclosed. The system obtains a first mixing fraction corresponding to a first X-ray beam, the mixing fraction represents a fraction of the first X-ray beam inside a measurement box of a wafer sample, the measurement box represents a bore structure disposed over a substrate and having a film layer disposed inside the bore structure. The system obtains a contribution value for the measurement box corresponding to the first X-ray beam, the contribution value representing a species signal outside the measurement box that contributes to a same species signal inside the measurement box. The system obtains a first measurement detection signal corresponding to a measurement of the measurement box using the first X-ray beam. The system determines a measurement value of the film layer based on the first measurement detection signal, the contribution value, and the first mixing fraction.Type: GrantFiled: May 17, 2024Date of Patent: April 22, 2025Assignee: NOVA MEASURING INSTRUMENTS INC.Inventors: Heath Pois, Wei Ti Lee, Laxmi Warad, Dmitry Kislitsyn, Parker Lund, Benny Tseng, James Chen, Saurabh Singh
-
Publication number: 20240401940Abstract: A system to characterize a film layer within a measurement box is disclosed. The system obtains a first mixing fraction corresponding to a first X-ray beam, the mixing fraction represents a fraction of the first X-ray beam inside a measurement box of a wafer sample, the measurement box represents a bore structure disposed over a substrate and having a film layer disposed inside the bore structure. The system obtains a contribution value for the measurement box corresponding to the first X-ray beam, the contribution value representing a species signal outside the measurement box that contributes to a same species signal inside the measurement box. The system obtains a first measurement detection signal corresponding to a measurement of the measurement box using the first X-ray beam. The system determines a measurement value of the film layer based on the first measurement detection signal, the contribution value, and the first mixing fraction.Type: ApplicationFiled: May 17, 2024Publication date: December 5, 2024Applicant: NOVA MEASURING INSTRUMENTS INC.Inventors: Heath POIS, Wei Ti LEE, Laxmi WARAD, Dmitry Kislitsyn, Parker Lund, Benny Tseng, James CHEN, Saurabh Singh
-
Publication number: 20240167814Abstract: Quantification of the passivation and the selectivity in deposition process is disclosed. The passivation is evaluated by calculating film thicknesses on pattern lines and spaces. An XPS signal is used, which is normalized with X-ray flux number. The method is efficient for calculating thickness in selective deposition process, wherein the thickness can be used as metric to measure selectivity. Measured photoelectrons for each of the materials can be expressed as a function of the thickness of the material overlaying it, adjusted by material constant and effective attenuation length. In selective deposition over a patterned wafer, the three expressions can be solved to determine the thickness of the intended deposition and the thickness of any unintended deposition over passivated pattern.Type: ApplicationFiled: December 22, 2023Publication date: May 23, 2024Inventors: Heath A. POIS, Laxmi WARAD, Srinivasan RANGARAJAN
-
Patent number: 11988502Abstract: A system to characterize a film layer within a measurement box is disclosed. The system obtains a first mixing fraction corresponding to a first X-ray beam, the mixing fraction represents a fraction of the first X-ray beam inside a measurement box of a wafer sample, the measurement box represents a bore structure disposed over a substrate and having a film layer disposed inside the bore structure. The system obtains a contribution value for the measurement box corresponding to the first X-ray beam, the contribution value representing a species signal outside the measurement box that contributes to a same species signal inside the measurement box. The system obtains a first measurement detection signal corresponding to a measurement of the measurement box using the first X-ray beam. The system determines a measurement value of the film layer based on the first measurement detection signal, the contribution value, and the first mixing fraction.Type: GrantFiled: October 24, 2022Date of Patent: May 21, 2024Assignee: NOVA MEASURING INSTRUMENTS INC.Inventors: Heath Pois, Wei Ti Lee, Laxmi Warad, Dmitry Kislitsyn, Parker Lund, Benny Tseng, James Chen, Saurabh Singh
-
Patent number: 11852467Abstract: Quantification of the passivation and the selectivity in deposition process is disclosed. The passivation is evaluated by calculating film thicknesses on pattern lines and spaces. An XPS signal is used, which is normalized with X-ray flux number. The method is efficient for calculating thickness in selective deposition process, wherein the thickness can be used as metric to measure selectivity. Measured photoelectrons for each of the materials can be expressed as a function of the thickness of the material overlaying it, adjusted by material constant and effective attenuation length. In selective deposition over a patterned wafer, the three expressions can be solved to determine the thickness of the intended deposition and the thickness of any unintended deposition over passivated pattern.Type: GrantFiled: March 12, 2020Date of Patent: December 26, 2023Assignee: NOVA MEASURING INSTRUMENTS, INC.Inventors: Heath A. Pois, Laxmi Warad, Srinivasan Rangarajan
-
Publication number: 20230288196Abstract: A system to characterize a film layer within a measurement box is disclosed. The system obtains a first mixing fraction corresponding to a first X-ray beam, the mixing fraction represents a fraction of the first X-ray beam inside a measurement box of a wafer sample, the measurement box represents a bore structure disposed over a substrate and having a film layer disposed inside the bore structure. The system obtains a contribution value for the measurement box corresponding to the first X-ray beam, the contribution value representing a species signal outside the measurement box that contributes to a same species signal inside the measurement box. The system obtains a first measurement detection signal corresponding to a measurement of the measurement box using the first X-ray beam. The system determines a measurement value of the film layer based on the first measurement detection signal, the contribution value, and the first mixing fraction.Type: ApplicationFiled: October 24, 2022Publication date: September 14, 2023Applicant: NOVA MEASURING INSTRUMENTS INC.Inventors: Heath POIS, Wei Ti LEE, Laxmi WARAD, Dmitry Kislitsyn, Parker Lund, Benny Tseng, James CHEN, Saurabh Singh
-
Publication number: 20220155064Abstract: Quantification of the passivation and the selectivity in deposition process is disclosed. The passivation is evaluated by calculating film thicknesses on pattern lines and spaces. An XPS signal is used, which is normalized with X-ray flux number. The method is efficient for calculating thickness in selective deposition process, wherein the thickness can be used as metric to measure selectivity. Measured photoelectrons for each of the materials can be expressed as a function of the thickness of the material overlaying it, adjusted by material constant and effective attenuation length. In selective deposition over a patterned wafer, the three expressions can be solved to determine the thickness of the intended deposition and the thickness of any unintended deposition over passivated pattern.Type: ApplicationFiled: March 12, 2020Publication date: May 19, 2022Inventors: Heath A. POIS, Laxmi WARAD, Srinivasan RANGARAJAN