Patents by Inventor Le Gu

Le Gu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240093095
    Abstract: The present disclosure relates to the technical field of pyrolysis and improvement of caking middling coals, in particular to a low temperature pyrolysis method of a caking middling coal. The present disclosure provides a low temperature pyrolysis method of a caking middling coal, including the following steps: conveying the caking middling coal into a pyrolysis reactor through a top of the pyrolysis reactor; dividing a reaction chamber of the pyrolysis reactor into a drying section, a softening section, a melting and depolymerization section, a solidification section, and a cooling section by means of multi-channel gas distribution; and conducting zoned temperature control-based pyrolysis to obtain semi-coke at a bottom of the reactor as well as tar and coal gas at the top of the reactor. The pyrolysis method can well avoid caking and swelling of the caking middling coal during pyrolysis.
    Type: Application
    Filed: May 16, 2023
    Publication date: March 21, 2024
    Inventors: Zhuangzhuang ZHANG, Feng FU, Zhiping MI, Yanzhong ZHEN, Jie GU, Xiaoxia YANG, Le WANG, Xiaoli QIU
  • Publication number: 20240084369
    Abstract: A digital microfluidic apparatus and a driving method therefor. The digital microfluidic apparatus comprises a digital microfluidic chip (10), a thermal control apparatus (20), and an elastic support apparatus (30). The digital microfluidic chip (10) is provided with a droplet channel (91), and the droplet channel (91) is configured to allow droplets (90) to move therein; the thermal control apparatus (20) is disposed on one side of the digital microfluidic chip (10), and is configured to generate at least two independent and non-interference hot zones in the droplet channel (91), and control the temperature of each hot zone; and the elastic support apparatus (30) is disposed on the side of the thermal control apparatus (20) away from the digital microfluidic chip (10), and is configured to drive the thermal control apparatus (20) to be pasted on the surface of the digital microfluidic chip (10).
    Type: Application
    Filed: July 21, 2022
    Publication date: March 14, 2024
    Inventors: Qiuxu WEI, Wenliang YAO, Yongjia GAO, Bolin FAN, Yingying ZHAO, Le GU, Li YANG
  • Publication number: 20240076315
    Abstract: Provided in the present disclosure are a KHL polypeptide, and the use thereof in the preparation of a TABP-EIC cell. In addition, also provided in the present disclosure are a KHL polypeptide conjugate, a tumor-antigen-binding polypeptide containing the KHL polypeptide, a DNA molecule, a carrier, a host cell and a pharmaceutical composition. The tumor-antigen-binding polypeptide is composed of the KHL polypeptide, a transmembrane domain and/or a signal transduction domain.
    Type: Application
    Filed: October 17, 2023
    Publication date: March 7, 2024
    Inventors: Le YIN, Yuchun GU
  • Publication number: 20240077621
    Abstract: A target device receives a plurality of pieces of first data, where each piece of the plurality of pieces of first data includes first ephemeris information and/or first almanac information. The target device identifies abnormal first data among the plurality of pieces of first data, where the plurality of pieces of first data include the abnormal first data, and the plurality of pieces of first data are obtained by the target device from a plurality of access network devices. A plurality of pieces of first ephemeris information and/or a plurality of pieces of first almanac information in the plurality of pieces of first data correspond to a first satellite. The target device may determine, by using the plurality of pieces of first ephemeris information and/or the plurality of pieces of first almanac information, that a piece of first ephemeris information and/or a piece of first almanac information is abnormal.
    Type: Application
    Filed: April 27, 2023
    Publication date: March 7, 2024
    Applicant: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Jihong LI, Le GE, Zhaogen YIN, Yang GU
  • Patent number: 11865538
    Abstract: A biological detection chip, a biological detection device, and a detection method thereof are disclosed. The biological detection chip includes a first base substrate and a plurality of detection units arranged in an array along a row direction and a column direction on the first base substrate. Each of the plurality of detection units includes a thin film transistor and an electrode, the thin film transistor is on the first base substrate and includes a gate electrode, a source electrode, and a drain electrode, and the electrode is on a side of the thin film transistor away from the first base substrate and is connected to the drain electrode, and the electrode is configured to carry a biological material to be detected.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: January 9, 2024
    Assignees: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Wenliang Yao, Nan Zhao, Peizhi Cai, Fengchun Pang, Yue Geng, Le Gu, Yuelei Xiao, Hui Liao, Yingying Zhao, Bolin Fan
  • Patent number: 11708604
    Abstract: A gene sequencing substrate and a method for manufacturing the same, and a gene sequencing device are provided. It belongs to the technical field of gene sequencing, and can solve the problem of high cost of the high-throughput sequencing chip in the prior art. The gene sequencing substrate of the present disclosure comprises a plastic material with concave structures as base substrate, and the concave structures serve as reaction cells. Since the base substrate has plasticity, the concave structures can be formed by a simple process to reduce the cost of the gene sequencing substrate. Meanwhile, a first protective layer may be provided on the inner wall of the concave structures for preventing the inner wall of the concave structures from being corroded by the reaction liquid.
    Type: Grant
    Filed: December 24, 2018
    Date of Patent: July 25, 2023
    Assignees: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Peizhi Cai, Fengchun Pang, Yue Geng, Le Gu, Chuncheng Che
  • Patent number: 11691147
    Abstract: A digital microfluidic chip and a digital microfluidic system. The digital microfluidic chip comprises: an upper substrate and a lower substrate arranged opposite to each other; multiple driving circuits and multiple addressing circuits disposed between the lower substrate and the upper substrate; and a control circuit, electrically connected to the driving circuits and the addressing circuits. The control circuit is configured to apply, in a driving stage, a driving voltage to each driving circuit, such that a droplet is controlled to move inside a droplet accommodation space according to a set path, measure, in a detection stage, after a bias voltage is applied to each addressing circuit, a charge loss amount of each addressing circuit, and to determine the position of the droplet according to the charge loss amount. The charge loss amount of each addressing circuit is related to the intensity of received external light.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: July 4, 2023
    Assignees: Beijing BOE Optoelectronics Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Mingyang Lv, Yue Li, Yanchen Li, Jinyu Li, Dawei Feng, Yu Zhao, Dong Wang, Wang Guo, Hailong Wang, Yue Geng, Peizhi Cai, Fengchun Pang, Le Gu, Chuncheng Che, Haochen Cui, Yingying Zhao, Nan Zhao, Yuelei Xiao, Hui Liao
  • Patent number: 11684916
    Abstract: A chip for polymerase chain reaction, a method of operating a chip for polymerase chain reaction, and a reaction device are provided. The chip includes: a sample adding region, a mixing region, a temperature cycling region in a sequential arrangement, and at least one driving unit group. The at least one driving unit group includes a plurality of driving units and is configured to drive a liquid drop to move and sequentially pass through the sample adding region, the mixing region, and the temperature cycling region.
    Type: Grant
    Filed: January 9, 2019
    Date of Patent: June 27, 2023
    Assignees: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Wenliang Yao, Nan Zhao, Haochen Cui, Peizhi Cai, Fengchun Pang, Yue Geng, Le Gu, Yuelei Xiao, Hui Liao, Yingying Zhao, Chuncheng Che
  • Patent number: 11583855
    Abstract: The present disclosure discloses a microfluidic structure, a microfluidic chip and a detection method. The microfluidic structure includes: a first base substrate and a second base substrate opposite to each other, an antibody area located between the first base substrate and the second base substrate and storing an enzyme-labeled first antibody, a cleaning area storing cleaning liquid, a signal substrate area storing a signal substrate solution and a detection area with a second antibody and an ion sensitive film fixed thereon, wherein all channel areas from the antibody area, the cleaning area and the signal substrate area to the detection area each have a driving electrode structure driving liquid drops to move; and the detection area has a thin film transistor connected with the ion sensitive film.
    Type: Grant
    Filed: February 26, 2021
    Date of Patent: February 21, 2023
    Assignees: Beijing BOE Sensor Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Hui Liao, Yingying Zhao, Bolin Fan, Wenliang Yao, Nan Zhao, Le Gu, Yongjia Gao
  • Patent number: 11577246
    Abstract: A microfluidic device and a detection method for the microfluidic device are provided. The microfluidic device includes a driving substrate configured to drive a movement of a droplet; and a position detector configured to detect a position of the droplet on the driving substrate.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: February 14, 2023
    Assignees: Beijing BOE Sensor Technology Co., Ltd., BOE Technology Group Co., Ltd.
    Inventors: Le Gu, Peizhi Cai, Fengchun Pang, Yue Geng, Yingying Zhao, Haochen Cui, Yuelei Xiao, Hui Liao, Wenliang Yao, Nan Zhao
  • Publication number: 20220403306
    Abstract: Disclosed are a substrate for a microfluidic device, a microfluidic device, a driving method of the microfluidic device, and a method of manufacturing a substrate for the microfluidic device. The substrate includes: a first base substrate; a first electrode layer on the first base substrate, the first electrode layer including a plurality of drive electrodes. The plurality of drive electrodes define at least one flow channel and at least one functional area in the first substrate, the at least one functional area includes a reagent area, the at least one flow channel includes a reagent area flow channel, the reagent area includes a reagent area liquid storage portion and a droplet shape changing portion, the droplet shape changing portion is adjacent to the reagent area flow channel, and the reagent liquid storage portion is on a side of the droplet shape changing portion away from the reagent area flow channel.
    Type: Application
    Filed: December 25, 2020
    Publication date: December 22, 2022
    Inventors: Bolin FAN, Le GU, Yingying ZHAO, Wenliang YAO, Yongjia GAO, Qiuxu WEI
  • Publication number: 20220395826
    Abstract: The present disclosure relates to a microfluidic substrate, a microfluidic device and a driving method thereof. The microfluidic substrate includes a first area, the first area includes a first module for generating droplets, the first module includes a first electrode pair and a second electrode pair, and the first electrode pair and the second electrode pair are arranged in a crisscross pattern. The first electrode pair includes a first electrode and a second electrode, and the second electrode pair includes a third electrode and a fourth electrode.
    Type: Application
    Filed: December 25, 2020
    Publication date: December 15, 2022
    Inventors: Bolin FAN, Yongjia GAO, Yingying ZHAO, Le GU, Wenliang YAO, Qiuxu WEI
  • Publication number: 20220395832
    Abstract: The present disclosure provides a substrate for driving droplets, a manufacturing method thereof, and a microfluidic device. The substrate includes a first base substrate a plurality of leads on the first base substrate a plurality of driving electrodes on a side of the plurality of leads away from the first base substrate and a shielding electrode on the side of the plurality of leads away from the first base substrate and grounded. Each of the plurality of leads is electrically connected to at least one of the plurality of driving electrodes, an orthographic projection of the shielding electrode on the first base substrate and an orthographic projection of at least one of the plurality of leads on the first base substrate at least partially overlap, and the shielding electrode is electrically insulated from the plurality of driving electrodes.
    Type: Application
    Filed: December 25, 2020
    Publication date: December 15, 2022
    Inventors: Bolin FAN, Le GU, Yingying ZHAO, Wenliang YAO, Yongjia GAO, Qiuxu WEI
  • Patent number: 11498068
    Abstract: A microfluidic device, a microfluidic detection assembly and a detection method for the microfluidic device. The microfluidic device includes a first substrate and a second substrate; the first substrate and the second substrate are oppositely arranged to define a channel between the first substrate and the second substrate, the channel is configured for liquid to flow, the first substrate includes a base substrate and a plurality of control assemblies which are arranged on the base substrate along an extending direction of the channel, each of the plurality of control assemblies includes: a first electrode, a second electrode and a plurality of coils, and the first electrode is configured to input currents into the plurality of coils, and the plurality of coils are connected in parallel to the second electrode.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: November 15, 2022
    Assignees: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., Beijing BOE Technology Development Co., Ltd.
    Inventors: Wenliang Yao, Haochen Cui, Peizhi Cai, Yuelei Xiao, Fengchun Pang, Yue Geng, Le Gu, Nan Zhao, Hui Liao, Yingying Zhao, Chuncheng Che
  • Publication number: 20220341925
    Abstract: The present disclosure relates to a digital microfluidic chemiluminescence detection chip, a detection method and a detection device. The digital microfluidic chemiluminescence detection chip includes a first baseplate and a second baseplate disposed oppositely. A cavity formed by the first and second baseplate includes a mixing and incubating area for combining an antigen, a magnetic particle antibody and an antibody, a luminescence detection area for chemiluminescence and detecting an optical signal, and a communication path for communicating the mixing and incubating area and the luminescence detection area. The first baseplate is provided with a drive array for driving sample solution to move and an optical sensing array for acquiring a luminescence signal of the sample solution. The drive array corresponds to positions of the mixing and incubating area, the luminescence detection area and the communication path. The optical sensing array corresponds to a position of the luminescence detection area.
    Type: Application
    Filed: February 7, 2021
    Publication date: October 27, 2022
    Inventors: Yue LI, Wenliang YAO, Nan ZHAO, Yongjia GAO, Bolin FAN, Le GU, Hui LIAO, Yingying ZHAO
  • Publication number: 20220314223
    Abstract: An embodiment of the present disclosure provides a microfluidic chip, including: a first substrate; wherein the first substrate includes a first base, a first electrode layer on the first base; the first electrode layer includes a plurality of first electrodes at intervals along a first direction, wherein a cross-sectional shape of the first electrode parallel to the first base is a centrosymmetric shape, and the cross-sectional shape includes: a first boundary and a second boundary opposite to each other in the first direction; a shape of the first boundary is a centrosymmetric curve, a distance between two end points of the first boundary in a second direction perpendicular to the first direction is less than a length of the first boundary; the second boundary has a same shape and length as the first boundary, and the first and second boundaries are parallel to each other in the first direction.
    Type: Application
    Filed: September 25, 2020
    Publication date: October 6, 2022
    Inventors: Qiuxu WEI, Yingying ZHAO, Wenliang YAO, Bolin FAN, Le GU, Yongjia GAO
  • Publication number: 20220314217
    Abstract: The present disclosure provides a microfluidic chip, and belongs to the field of biological detection technology. The microfluidic chip is divided into a middle region and a peripheral region surrounding the middle region; the middle region includes a liquid storage region and a detection region; the microfluidic chip includes a first substrate and a second substrate opposite to each other; the first substrate includes a first base plate and a first electrode layer; the second substrate includes a second base plate and a second electrode layer; wherein a liquid storage tank and a liquid inlet are on a side of the first base plate proximal to the second substrate, the liquid inlet penetrates through a bottom of the liquid storage tank; the liquid storage tank and the liquid inlet are both in the liquid storage region.
    Type: Application
    Filed: January 29, 2021
    Publication date: October 6, 2022
    Inventors: Le GU, Yingying ZHAO, Wenliang YAO, Bolin FAN, Yongjia GAO, Qiuxu WEI
  • Publication number: 20220314216
    Abstract: A micro-fluidic chip is provided. The micro-fluidic chip includes: a first base substrate; a first electrode on the first base substrate and electrically coupled to a wire at a driving end; a second electrode on a side of the first electrode away from the first base substrate and spaced apart and electrically insulated from the first electrode, the second electrode including a plurality of sub-blocks of the second electrode, and an orthographic projection of the second electrode on the first base substrate being at least partially overlapped with an orthographic projection of the first electrode on the first base substrate; and voltage-dividing resistors coupled to the plurality of sub-blocks of the second electrode in one-to-one correspondence and electrically coupled to a ground wire.
    Type: Application
    Filed: September 29, 2020
    Publication date: October 6, 2022
    Inventors: Bolin FAN, Yingying ZHAO, Le GU, Wenliang YAO, Hui LIAO, Yongjia GAO, Qiuxu WEI
  • Patent number: 11400448
    Abstract: The disclosure provides a chip substrate and a digital micro-fluidic chip and belongs to the field of digital micro-fluidic technology. The chip substrate provided by the disclosure has a plurality of control regions spaced apart from each other, the chip substrate including: a first base substrate; a driving electrode disposed in each control region over the first base substrate, the driving electrode being configured to drive a droplet to move, wherein the chip substrate further comprises a pressure detecting element provided in each control region over the first base substrate, and configured to detect a pressure from the droplet, so that the chip substrate determines a position of the droplet according to the pressure.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: August 2, 2022
    Assignees: BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD., BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Yue Geng, Peizhi Cai, Fengchun Pang, Le Gu, Chuncheng Che
  • Publication number: 20220226816
    Abstract: The disclosure provides a micro-fluidic chip, and belongs to the field of chip technology. The microfluidic chip provided in the present disclosure includes a plurality of microfluidic units, each microfluidic unit includes an operation region and a transition region located on at least one side of the operation region, the transition regions at adjacent side of two adjacent microfluidic units are disposed opposite to each other. Each microfluidic unit includes: a first substrate; a first electrode layer disposed on the first substrate, the first electrode layer including a plurality of first sub-electrodes located in the operation region and at least one second sub-electrode located in the transition region, and the at least one second sub-electrode configured to drive a droplet to move from one of the plurality of microfluidic units to an adjacent microfluidic unit.
    Type: Application
    Filed: September 30, 2021
    Publication date: July 21, 2022
    Inventors: Qiuxu WEI, Wenliang YAO, Yingying ZHAO, Le GU, Bolin FAN, Yongjia GAO