Patents by Inventor Lee A. Weinstein

Lee A. Weinstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240150183
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Application
    Filed: November 14, 2023
    Publication date: May 9, 2024
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis
  • Publication number: 20240144904
    Abstract: Described herein are window retrofits including a monolithic silica aerogel slab having (i) an average haze value of <5% as calculated in accordance with ASTM standard D1003-13 and (ii) a U-factor of <0.5 BTU/sf/hr/° F., and a transparent polymer envelope sealed at an internal pressure of ?1 atmosphere, wherein the monolithic silica aerogel slab is encapsulated in the transparent polymer envelope. The monolithic aerogel slab can have a transmittance>94% at 8 mm thickness. The window retrofit can be bonded to a glass sheet.
    Type: Application
    Filed: June 27, 2023
    Publication date: May 2, 2024
    Inventors: Evelyn N. Wang, Gang Chen, Xuanhe Zhao, Elise M. Strobach, Bikramjit S. Bhatia, Lin Zhao, Sungwoo Yang, Lee A. Weinstein, Thomas A. Cooper, Shaoting Lin
  • Patent number: 11851334
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: December 26, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis
  • Patent number: 11749247
    Abstract: Described herein are window retrofits including a monolithic silica aerogel slab having (i) an average haze value of <5% as calculated in accordance with ASTM standard D1003-13 and (ii) a U-factor of <0.5 BTU/sf/hr/° F., and a transparent polymer envelope sealed at an internal pressure of ?1 atmosphere, wherein the monolithic silica aerogel slab is encapsulated in the transparent polymer envelope. The monolithic aerogel slab can have a transmittance >94% at 8 mm thickness. The window retrofit can be bonded to a glass sheet.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: September 5, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Evelyn N. Wang, Gang Chen, Xuanhe Zhao, Elise M. Strobach, Bikramjit S. Bhatia, Lin Zhao, Sungwoo Yang, Lee A. Weinstein, Thomas A. Cooper, Shaoting Lin
  • Publication number: 20220223130
    Abstract: Described herein are window retrofits including a monolithic silica aerogel slab having (i) an average haze value of <5% as calculated in accordance with ASTM standard D1003-13 and (ii) a U-factor of <0.5 BTU/sf/hr/° F., and a transparent polymer envelope sealed at an internal pressure of ?1 atmosphere, wherein the monolithic silica aerogel slab is encapsulated in the transparent polymer envelope. The monolithic aerogel slab can have a transmittance >94% at 8 mm thickness. The window retrofit can be bonded to a glass sheet.
    Type: Application
    Filed: October 21, 2021
    Publication date: July 14, 2022
    Inventors: Evelyn N. Wang, Gang Chen, Xuanhe Zhao, Elise M. Strobach, Bikramjit S. Bhatia, Lin Zhao, Sungwoo Yang, Lee A. Weinstein, Thomas A. Cooper, Shaoting Lin
  • Patent number: 11170750
    Abstract: Described herein are window retrofits including a monolithic silica aerogel slab having (i) an average haze value of <5% as calculated in accordance with ASTM standard D1003-13 and (ii) a U-factor of <0.5 BTU/sf/hr/° F., and a transparent polymer envelope sealed at an internal pressure of ?1 atmosphere, wherein the monolithic silica aerogel slab is encapsulated in the transparent polymer envelope. The monolithic aerogel slab can have a transmittance >94% at 8 mm thickness. The window retrofit can be bonded to a glass sheet.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: November 9, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Evelyn N. Wang, Gang Chen, Xuanhe Zhao, Elise M. Strobach, Bikramjit S. Bhatia, Lin Zhao, Sungwoo Yang, Lee A. Weinstein, Thomas A. Cooper, Shaoting Lin
  • Publication number: 20210094834
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Application
    Filed: November 6, 2020
    Publication date: April 1, 2021
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis
  • Patent number: 10889501
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: January 12, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis
  • Publication number: 20190333490
    Abstract: Described herein are window retrofits including a monolithic silica aerogel slab having (i) an average haze value of <5% as calculated in accordance with ASTM standard D1003-13 and (ii) a U-factor of <0.5 BTU/sf/hr/° F., and a transparent polymer envelope sealed at an internal pressure of ?1 atmosphere, wherein the monolithic silica aerogel slab is encapsulated in the transparent polymer envelope. The monolithic aerogel slab can have a transmittance >94% at 8 mm thickness. The window retrofit can be bonded to a glass sheet.
    Type: Application
    Filed: April 25, 2019
    Publication date: October 31, 2019
    Inventors: Evelyn N. Wang, Gang Chen, Xuanhe Zhao, Elise M. Strobach, Bikramjit S. Bhatia, Lin Zhao, Sungwoo Yang, Lee A. Weinstein, Thomas A. Cooper, Shaoting Lin
  • Publication number: 20190100439
    Abstract: A silica aerogel having a mean pore size less than 5 nm with a standard deviation of 3 nm. The silica aerogel may have greater than 95% solar-weighted transmittance at a thickness of 8 mm for wavelengths in the range of 250 nm to 2500 nm, and a 400° C. black-body weighted specific extinction coefficient of greater than 8 m2/kg for wavelengths of 1.5 ?m to 15 ?m. Silica aerogel synthesis methods are described. A solar thermal aerogel receiver (STAR) may include an opaque frame defining an opening, an aerogel layer disposed in the opaque frame, with at least a portion of the aerogel layer being proximate the opening, and a heat transfer fluid pipe in thermal contact with and proximate the aerogel layer. A concentrating solar energy system may include a STAR and at least one reflector to direct sunlight to an opening in the STAR.
    Type: Application
    Filed: February 24, 2017
    Publication date: April 4, 2019
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana Boriskina, Lee A. Weinstein, Sungwoo Yang, Bikramjit S. Bhatia, Lin Zhao, Elise M. Strobach, Thomas A. Cooper, David M. Bierman, Xiaopeng Huang, James Loomis
  • Patent number: 10043932
    Abstract: A single-stack, solar power receiver comprising both a thermal absorber layer and a photovoltaic cell layer. The stack includes an aerogel layer, that is optically transparent and thermally insulating (“OTTI”); a spectrally selective high thermal conductivity (“SSTC”) thermal absorber layer; a bottom OTTI layer; and a PV cell layer. The SSTC layer includes a set of fins that substantially blocks solar radiation absorption in the band where PV cells are most sensitive. Photons with energies above or below this band block range are absorbed by the fins and the absorbed heat is conducted to pipes in the fin structure carrying a heated thermal working fluid to heat storage. Photons with energy in the band block range are reflected by the SSTC fins to the PV cell layer. The bottom OTTI aerogel layer keeps the PV cell operating near ambient temperature. The PV cell converts incident solar radiation to electrical energy.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: August 7, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana V. Boriskina, Kenneth McEnaney, Hadi Ghasemi, Selcuk Yerci, Andrej Lenert, Sungwoo Yang, Nenad Miljkovic, Lee A. Weinstein, David Bierman
  • Patent number: 9917221
    Abstract: Solar power conversion system. The system includes a cavity formed within an enclosure having highly specularly reflecting in the IR spectrum inside walls, the enclosure having an opening to receive solar radiation. An absorber is positioned within the cavity for receiving the solar radiation resulting in heating of the absorber structure. In a preferred embodiment, the system further contains an energy conversion and storage devices thermally-linked to the absorber by heat conduction, convection, far-field or near-field thermal radiation.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: March 13, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Svetlana Boriskina, Daniel Kraemer, Kenneth McEnaney, Lee A. Weinstein, Gang Chen
  • Publication number: 20150053266
    Abstract: A single-stack, solar power receiver comprising both a thermal absorber layer and a photovoltaic cell layer. The stack includes an aerogel layer, that is optically transparent and thermally insulating (“OTTI”); a spectrally selective high thermal conductivity (“SSTC”) thermal absorber layer; a bottom OTTI layer; and a PV cell layer. The SSTC layer includes a set of fins that substantially blocks solar radiation absorption in the band where PV cells are most sensitive. Photons with energies above or below this band block range are absorbed by the fins and the absorbed heat is conducted to pipes in the fin structure carrying a heated thermal working fluid to heat storage. Photons with energy in the band block range are reflected by the SSTC fins to the PV cell layer. The bottom OTTI aerogel layer keeps the PV cell operating near ambient temperature. The PV cell converts incident solar radiation to electrical energy.
    Type: Application
    Filed: August 20, 2014
    Publication date: February 26, 2015
    Inventors: Gang Chen, Evelyn N. Wang, Svetlana V. Boriskina, Kenneth McEnaney, Hadi Ghasemi, Selcuk Yerci, Andrej Lenert, Sungwoo Yang, Nenad Miljkovic, Lee A. Weinstein, David Bierman
  • Publication number: 20140060604
    Abstract: Solar power conversion system. The system includes a cavity formed within an enclosure having highly specularly reflecting in the IR spectrum inside walls, the enclosure having an opening to receive solar radiation. An absorber is positioned within the cavity for receiving the solar radiation resulting in heating of the absorber structure. In a preferred embodiment, the system further contains an energy conversion and storage devices thermally-linked to the absorber by heat conduction, convection, far-field or near-field thermal radiation.
    Type: Application
    Filed: August 21, 2013
    Publication date: March 6, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Svetlana Boriskina, Daniel Kraemer, Kenneth McEnaney, Lee A. Weinstein, Gang Chen
  • Patent number: D270532
    Type: Grant
    Filed: August 22, 1980
    Date of Patent: September 13, 1983
    Inventor: Lee A. Weinstein