Patents by Inventor Lee Brogan

Lee Brogan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10508359
    Abstract: The embodiments herein relate to methods and apparatus for determining whether a particular test bath is able to successfully fill a feature on a substrate. In various cases, the substrate is a semiconductor substrate and the feature is a through-silicon-via. Generally, two experiments are used: a first experiment simulates the conditions present in a field region of the substrate during the fill process, and the second experiment simulates the conditions present in a feature on the substrate during the fill process. The output from these experiments may be used with various techniques to predict whether the particular bath will result in an adequately filled feature.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: December 17, 2019
    Assignee: Lam Research Corporation
    Inventors: Lee Brogan, Steven T. Mayer, Matthew Thorum, Joseph Richardson, David W. Porter, Haiying Fu
  • Patent number: 9816196
    Abstract: Apparatus and methods for electroplating metal onto substrates are disclosed. The electroplating apparatus comprise an electroplating cell and at least one oxidization device. The electroplating cell comprises a cathode chamber and an anode chamber separated by a porous barrier that allows metal cations to pass through but prevents organic particles from crossing. The oxidation device (ODD) is configured to oxidize cations of the metal to be electroplated onto the substrate, which cations are present in the anolyte during electroplating. In some embodiments, the ODD is implemented as a carbon anode that removes Cu(I) from the anolyte electrochemically. In other embodiments, the ODD is implemented as an oxygenation device (OGD) or an impressed current cathodic protection anode (ICCP anode), both of which increase oxygen concentration in anolyte solutions. Methods for efficient electroplating are also disclosed.
    Type: Grant
    Filed: April 24, 2013
    Date of Patent: November 14, 2017
    Assignee: Novellus Systems, Inc.
    Inventors: Tighe A. Spurlin, Charles L. Merrill, Ludan Huang, Matthew Thorum, Lee Brogan, James E. Duncan, Frederick D. Wilmot, Robert Marshall Stowell, Steven T. Mayer, Haiying Fu, David W. Porter, Shantinath Ghongadi, Jonathan D. Reid, Hyosang S. Lee, Mark J. Willey
  • Publication number: 20170241041
    Abstract: The embodiments herein relate to methods and apparatus for determining whether a particular test bath is able to successfully fill a feature on a substrate. In various cases, the substrate is a semiconductor substrate and the feature is a through-silicon-via. Generally, two experiments are used: a first experiment simulates the conditions present in a field region of the substrate during the fill process, and the second experiment simulates the conditions present in a feature on the substrate during the fill process. The output from these experiments may be used with various techniques to predict whether the particular bath will result in an adequately filled feature.
    Type: Application
    Filed: May 9, 2017
    Publication date: August 24, 2017
    Inventors: Lee Brogan, Steven T. Mayer, Matthew Thorum, Joseph Richardson, David W. Porter, Haiying Fu
  • Patent number: 9689083
    Abstract: The embodiments herein relate to methods and apparatus for determining whether a particular test bath is able to successfully fill a feature on a substrate. In various cases, the substrate is a semiconductor substrate and the feature is a through-silicon-via. Generally, two experiments are used: a first experiment simulates the conditions present in a field region of the substrate during the fill process, and the second experiment simulates the conditions present in a feature on the substrate during the fill process. The output from these experiments may be used with various techniques to predict whether the particular bath will result in an adequately filled feature.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: June 27, 2017
    Assignee: Lam Research Corporation
    Inventors: Lee Brogan, Steven T. Mayer, Matthew Thorum, Joseph Richardson, David W. Porter, Haiying Fu
  • Publication number: 20140367279
    Abstract: The embodiments herein relate to methods and apparatus for determining whether a particular test bath is able to successfully fill a feature on a substrate. In various cases, the substrate is a semiconductor substrate and the feature is a through-silicon-via. Generally, two experiments are used: a first experiment simulates the conditions present in a field region of the substrate during the fill process, and the second experiment simulates the conditions present in a feature on the substrate during the fill process. The output from these experiments may be used with various techniques to predict whether the particular bath will result in an adequately filled feature.
    Type: Application
    Filed: May 12, 2014
    Publication date: December 18, 2014
    Applicant: Lam Research Corporation
    Inventors: Lee Brogan, Steven T. Mayer, Matthew Thorum, Joseph Richardson, David W. Porter, Haiying Fu
  • Publication number: 20130284604
    Abstract: Apparatus and methods for electroplating metal onto substrates are disclosed. The electroplating apparatus comprise an electroplating cell and at least one oxidization device. The electroplating cell comprises a cathode chamber and an anode chamber separated by a porous barrier that allows metal cations to pass through but prevents organic particles from crossing. The oxidation device (ODD) is configured to oxidize cations of the metal to be electroplated onto the substrate, which cations are present in the anolyte during electroplating. In some embodiments, the ODD is implemented as a carbon anode that removes Cu(I) from the anolyte electrochemically. In other embodiments, the ODD is implemented as an oxygenation device (OGD) or an impressed current cathodic protection anode (ICCP anode), both of which increase oxygen concentration in anolyte solutions. Methods for efficient electroplating are also disclosed.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 31, 2013
    Inventors: Tighe A. Spurlin, Charles L. Merrill, Ludan Huang, Matthew Thorum, Lee Brogan, James E. Duncan, Frederick D. Wilmot, Marshall R. Stowell, Steven T. Mayer, Haiying Fu, David W. Porter, Shantinath Ghongadi, Jonathan D. Reid, Hyosang S. Lee, Mark J. Willey