Patents by Inventor Lee J. Brogan

Lee J. Brogan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230260834
    Abstract: Various embodiments herein relate to methods, apparatus, and systems for forming an interconnect structure, or a portion thereof, on a substrate. In one example, the method includes receiving the substrate in a processing chamber, the substrate having dielectric material exposed within recessed features formed therein; exposing the substrate to plasma to thereby modify a top surface of the dielectric material; forming a metal oxide barrier layer on the modified top surface of the dielectric material, wherein the metal oxide barrier layer is formed through atomic layer deposition and/or chemical vapor deposition. In certain implementations, one or more additional step may be taken to improve processing results, for example to promote nucleation and/or adhesion of relevant layers.
    Type: Application
    Filed: June 25, 2021
    Publication date: August 17, 2023
    Inventors: Lee J. BROGAN, Patrick A. VAN CLEEMPUT, Matthew Martin HUIE, Kyle Jordan BLAKENEY, Yi Hua LIU
  • Publication number: 20230227992
    Abstract: Disclosed are alkaline electrodeposition solutions and apparatus and methods for using such solutions to electroplate metal. During electroplating, the solutions may produce superconformal fill of metal in features such as features having a critical dimension of about 20 nm or less. The metal electroplating process may be used during integrated circuit fabrication. For example, it may be used to fill trenches and vias in partially fabricated integrated circuits. The electroplated metal may be copper. The copper may be electroplated on a substrate material that is less noble than copper.
    Type: Application
    Filed: April 6, 2021
    Publication date: July 20, 2023
    Inventors: Lee J. Brogan, Matthew Martin Huie, Yi Hua Liu, Jonathan David Reid
  • Publication number: 20230197509
    Abstract: Various embodiments relate to methods, apparatus, and systems for forming an interconnect structure, or a portion thereof. The method may include contacting the substrate with a functionalization bath comprising a first solvent and a functionalization reactant to form a modified first material, and then depositing a second material on the modified first material through electroless plating, electroplating, chemical vapor deposition, or atomic layer deposition. The first material may be a dielectric material, a barrier layer, or a liner, and the second material may be a barrier layer or a barrier layer precursor, a liner, a seed layer, or a conductive metal that forms the interconnect of the interconnect structure, according to various embodiments.
    Type: Application
    Filed: May 20, 2021
    Publication date: June 22, 2023
    Inventors: Lee J. Brogan, Matthew Martin Huie, Yi Hua Liu, Jonathan David Reid
  • Publication number: 20230049157
    Abstract: Methods, systems, and computer programs are presented for predicting the performance of semiconductor manufacturing equipment operations. One method includes an operation for obtaining machine-learning (ML) models, each model related to predicting a performance metric for an operation of a semiconductor manufacturing tool. Further, each ML model utilizes features defining inputs for the ML model. The method further includes an operation for receiving a process definition for manufacturing a product with the semiconductor manufacturing tool. One or more ML models are utilized to estimate a performance of the process definition used in the semiconductor manufacturing tool. Additionally, the method includes presenting, on a display, results showing the estimate of the performance of the manufacturing of the product.
    Type: Application
    Filed: January 26, 2021
    Publication date: February 16, 2023
    Inventors: Kapil Umesh Sawlani, Michal Danek, Ravi Vellanki, Sanjay Gopinath, David g. Cohen, Sassan Roham, Saravanapriyan Sriraman, Benjamin Allen Haskell, Lee j. Brogan
  • Patent number: 11208732
    Abstract: Methods and apparatus for determining whether a substrate includes an unacceptably high amount of oxide on its surface are described. The substrate is typically a substrate that is to be electroplated. The determination may be made directly in an electroplating apparatus, during an initial portion of an electroplating process. The determination may involve immersing the substrate in electrolyte with a particular applied voltage or applied current provided during or soon after immersion, and recording a current response or voltage response over this same timeframe. The applied current or applied voltage may be zero or non-zero. By comparing the current response or voltage response to a threshold current, threshold voltage, or threshold time, it can be determined whether the substrate included an unacceptably high amount of oxide on its surface. The threshold current, threshold voltage, and/or threshold time may be selected based on a calibration procedure.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: December 28, 2021
    Assignee: Lam Research Corporation
    Inventors: Ludan Huang, Lee J. Brogan, Tighe A. Spurlin, Shantinath Ghongadi, Jonathan David Reid, Manish Ranjan, Bryan Pennington, Clifford Raymond Berry
  • Patent number: 11078591
    Abstract: Embodiments herein relate to methods, apparatus, and systems for electroplating metal into recessed features using a superconformal fill mechanism that provides relatively faster plating within a feature and relatively slower plating in the field region. Moreover, within the feature, plating occurs faster toward the bottom of the feature compared to the top of the feature. The result is that the feature is filled with metal from the bottom upwards, resulting in a high quality fill without the formation of seams or voids, defects that are likely where a conformal fill mechanism is used. The superconformal fill mechanism relies on the presence of a sacrificial oxidant molecule that is used to develop a differential current efficiency within the feature compared to the field region. Various plating conditions are balanced against one another to ensure that the feature fills from the bottom upwards. No organic plating additives are necessary, though plating additives can be used to improve the process.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: August 3, 2021
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Lee J. Brogan, Natalia V. Doubina, Matthew A. Rigsby, Jonathan David Reid
  • Publication number: 20210156045
    Abstract: Void-free bottom-up fill of copper in features is achieved on non-copper liner layers. A non-copper liner layer has a higher resistivity than copper. An electroplating solution for plating copper on a non-copper liner layer includes a low copper concentration, high pH, organic additives, and bromide ions as a copper complexing agent. The high pH and the bromide ions do not interfere with the activity of the organic additives. In some implementations, the concentration of copper ions is between about 0.2 g/L and about 10 g/L, a concentration of sulfuric acid is between about 0.1 g/L and about 10 g/L, and a concentration of the bromide ions is between about 20 mg/L and about 240 mg/L. In some implementations, the electroplating solution further includes chloride ions as an additional copper complexing agent at a concentration between about 0.1 mg/L and about 100 mg/L.
    Type: Application
    Filed: April 5, 2019
    Publication date: May 27, 2021
    Inventors: Lee J. Brogan, Jonathan David Reid, Yi Hua Liu
  • Publication number: 20190390361
    Abstract: Methods and apparatus for determining whether a substrate includes an unacceptably high amount of oxide on its surface are described. The substrate is typically a substrate that is to be electroplated. The determination may be made directly in an electroplating apparatus, during an initial portion of an electroplating process. The determination may involve immersing the substrate in electrolyte with a particular applied voltage or applied current provided during or soon after immersion, and recording a current response or voltage response over this same timeframe. The applied current or applied voltage may be zero or non-zero. By comparing the current response or voltage response to a threshold current, threshold voltage, or threshold time, it can be determined whether the substrate included an unacceptably high amount of oxide on its surface. The threshold current, threshold voltage, and/or threshold time may be selected based on a calibration procedure.
    Type: Application
    Filed: September 6, 2019
    Publication date: December 26, 2019
    Inventors: Ludan Huang, Lee J. Brogan, Tighe A. Spurlin, Shantinath Ghongadi, Jonathan David Reid, Manish Ranjan, Bryan Pennington, Clifford Raymond Berry
  • Patent number: 10443146
    Abstract: Methods and apparatus for determining whether a substrate includes an unacceptably high amount of oxide on its surface are described. The substrate is typically a substrate that is to be electroplated. The determination may be made directly in an electroplating apparatus, during an initial portion of an electroplating process. The determination may involve immersing the substrate in electrolyte with a particular applied voltage or applied current provided during or soon after immersion, and recording a current response or voltage response over this same timeframe. The applied current or applied voltage may be zero or non-zero. By comparing the current response or voltage response to a threshold current, threshold voltage, or threshold time, it can be determined whether the substrate included an unacceptably high amount of oxide on its surface. The threshold current, threshold voltage, and/or threshold time may be selected based on a calibration procedure.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: October 15, 2019
    Assignee: Lam Research Corporation
    Inventors: Ludan Huang, Lee J. Brogan, Tighe A. Spurlin, Shantinath Ghongadi, Jonathan David Reid, Manish Ranjan, Bryan Pennington, Clifford Raymond Berry
  • Publication number: 20190271094
    Abstract: Embodiments herein relate to methods, apparatus, and systems for electroplating metal into recessed features using a superconformal fill mechanism that provides relatively faster plating within a feature and relatively slower plating in the field region. Moreover, within the feature, plating occurs faster toward the bottom of the feature compared to the top of the feature. The result is that the feature is filled with metal from the bottom upwards, resulting in a high quality fill without the formation of seams or voids, defects that are likely where a conformal fill mechanism is used. The superconformal fill mechanism relies on the presence of a sacrificial oxidant molecule that is used to develop a differential current efficiency within the feature compared to the field region. Various plating conditions are balanced against one another to ensure that the feature fills from the bottom upwards. No organic plating additives are necessary, though plating additives can be used to improve the process.
    Type: Application
    Filed: May 13, 2019
    Publication date: September 5, 2019
    Inventors: Lee J. Brogan, Natalia V. Doubina, Matthew A. Rigsby, Jonathan David Reid
  • Patent number: 10329683
    Abstract: Embodiments herein relate to methods, apparatus, and systems for electroplating metal into recessed features using a superconformal fill mechanism that provides relatively faster plating within a feature and relatively slower plating in the field region. Moreover, within the feature, plating occurs faster toward the bottom of the feature compared to the top of the feature. The result is that the feature is filled with metal from the bottom upwards, resulting in a high quality fill without the formation of seams or voids, defects that are likely where a conformal fill mechanism is used. The superconformal fill mechanism relies on the presence of a sacrificial oxidant molecule that is used to develop a differential current efficiency within the feature compared to the field region. Various plating conditions are balanced against one another to ensure that the feature fills from the bottom upwards. No organic plating additives are necessary, though plating additives can be used to improve the process.
    Type: Grant
    Filed: November 3, 2016
    Date of Patent: June 25, 2019
    Assignee: Lam Research Corporation
    Inventors: Lee J. Brogan, Natalia V. Doubina, Matthew A. Rigsby, Jonathan David Reid
  • Publication number: 20180282894
    Abstract: Methods and apparatus for determining whether a substrate includes an unacceptably high amount of oxide on its surface are described. The substrate is typically a substrate that is to be electroplated. The determination may be made directly in an electroplating apparatus, during an initial portion of an electroplating process. The determination may involve immersing the substrate in electrolyte with a particular applied voltage or applied current provided during or soon after immersion, and recording a current response or voltage response over this same timeframe. The applied current or applied voltage may be zero or non-zero. By comparing the current response or voltage response to a threshold current, threshold voltage, or threshold time, it can be determined whether the substrate included an unacceptably high amount of oxide on its surface. The threshold current, threshold voltage, and/or threshold time may be selected based on a calibration procedure.
    Type: Application
    Filed: March 30, 2017
    Publication date: October 4, 2018
    Inventors: Ludan Huang, Lee J. Brogan, Tighe A. Spurlin, Shantinath Ghongadi, Jonathan David Reid, Manish Ranjan, Bryan Pennington, Clifford Raymond Berry
  • Publication number: 20180119305
    Abstract: Embodiments herein relate to methods, apparatus, and systems for electroplating metal into recessed features using a superconformal fill mechanism that provides relatively faster plating within a feature and relatively slower plating in the field region. Moreover, within the feature, plating occurs faster toward the bottom of the feature compared to the top of the feature. The result is that the feature is filled with metal from the bottom upwards, resulting in a high quality fill without the formation of seams or voids, defects that are likely where a conformal fill mechanism is used. The superconformal fill mechanism relies on the presence of a sacrificial oxidant molecule that is used to develop a differential current efficiency within the feature compared to the field region. Various plating conditions are balanced against one another to ensure that the feature fills from the bottom upwards. No organic plating additives are necessary, though plating additives can be used to improve the process.
    Type: Application
    Filed: November 3, 2016
    Publication date: May 3, 2018
    Inventors: Lee J. Brogan, Natalia V. Doubina, Matthew A. Rigsby, Jonathan David Reid
  • Publication number: 20180030611
    Abstract: Apparatus and methods for electroplating metal onto substrates are disclosed. The electroplating apparatus comprise an electroplating cell and at least one oxidization device. The electroplating cell comprises a cathode chamber and an anode chamber separated by a porous barrier that allows metal cations to pass through but prevents organic particles from crossing. The oxidation device (ODD) is configured to oxidize cations of the metal to be electroplated onto the substrate, which cations are present in the anolyte during electroplating. In some embodiments, the ODD is implemented as a carbon anode that removes Cu(I) from the anolyte electrochemically. In other embodiments, the ODD is implemented as an oxygenation device (OGD) or an impressed current cathodic protection anode (ICCP anode), both of which increase oxygen concentration in anolyte solutions. Methods for efficient electroplating are also disclosed.
    Type: Application
    Filed: October 11, 2017
    Publication date: February 1, 2018
    Inventors: Tighe A. Spurlin, Charles Lorenzo Merrill, Ludan Huang, Matthew Sherman Thorum, Lee J. Brogan, James E. Duncan, Frederick Dean Wilmot, Robert Marshall Stowell, Steven T. Mayer, Haiying Fu, David W. Porter, Shantinath Ghongadi, Jonathan David Reid, Hyosang S. Lee, Mark J. Willey