Patents by Inventor Lee Luo
Lee Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20020137312Abstract: Provided herein is an emissivity-change-free pumping plate kit used in a single wafer chamber. This kit comprises a top open pumping plate, and optionally a skirt and/or a second stage choking plate. The skirt may be installed around the wafer heater, underneath the wafer heater, or along the chamber body inside the chamber. The choking plate is installed downstream of the top open pumping plate along the purge gas flow. Also provided is a method of preventing emissivity change and further providing optimal film thickness uniformity during wafer processing by utilizing such kit in the chamber.Type: ApplicationFiled: March 2, 2001Publication date: September 26, 2002Applicant: Applied Materials, Inc.Inventors: Lee Luo, Henry Ho, Shulin Wang, Binh Hoa Tran, Alexander Tam, Errol A.C. Sanchez, Xianzhi Tao, Steven A. Chen
-
Publication number: 20020127508Abstract: An apparatus that includes a pumping plate having a skirt, where the skirt contains a number of holes and a wafer access slot, and where the number of holes are sized and positioned to provide uniform heating of a susceptor.Type: ApplicationFiled: January 15, 2002Publication date: September 12, 2002Applicant: Applied Materials, Inc.Inventors: Xiaoliang Jin, Shulin Wang, Lee Luo, Henry Ho, Steven A. Chen
-
Patent number: 6270859Abstract: A method of depositing titanium nitride by chemical vapor deposition in a chamber having several design features directed to the conductive nature of titanium nitride, particularly when a plasma treatment step is performed after the thermal deposition of the film. Preferably, during the post-deposition plasma treatment, RF power is applied only to the showerhead counter-electrode and none to the pedestal supporting the wafer, thereby preventing charging of the wafer.Type: GrantFiled: March 27, 1998Date of Patent: August 7, 2001Assignee: Applied Materials, Inc.Inventors: Jun Zhao, Ashok Sinha, Avi Tepman, Mei Chang, Lee Luo, Alex Schreiber, Talex Sajoto, Stefan Wolff, Charles Dornfest, Michal Danek
-
Publication number: 20010004478Abstract: A method of depositing titanium nitride by chemical vapor deposition in a chamber having several design features directed to the conductive nature of titanium nitride, particularly when a plasma treatment step is performed after the thermal deposition of the film. Preferably, during the post-deposition plasma treatment, RF power is applied only to the showerhead counter-electrode and none to the pedestal supporting the wafer, thereby preventing charging of the wafer.Type: ApplicationFiled: March 27, 1998Publication date: June 21, 2001Inventors: JUN ZHAO, ASHOK SINHA, AVI TEPMAN, MEI CHANG, LEE LUO, ALEX SCHREIBER, TALEX SAJOTO, STEFAN WOLFF, CHARLES DORNFEST, MICHAL DANEK
-
Patent number: 6210485Abstract: The invention relates to an apparatus and process for the vaporization of liquid precursors and deposition of a film on a suitable substrate. Particularly contemplated is an apparatus and process for the vaporization of a metal-oxide film, such as a barium, strontium, titanium oxide (BST) film, for deposition on a silicon wafer to make integrated circuit capacitors useful in high capacity dynamic memory modules. The vaporizer comprises thermally controlled components which are adapted for easy assembly and disassembly. A main vaporizing section provides a large heated surface for flash vaporization. A high conductance blocker is disposed at a lower end of the vaporizer to provide an extended vaporization surface. Optionally, a filter may be employed to capture unvaporized precursor droplets.Type: GrantFiled: July 13, 1999Date of Patent: April 3, 2001Assignee: Applied Materials, Inc.Inventors: Jun Zhao, Lee Luo, Xiaoliang Jin, Frank Chang, Charles Dornfest, Po Tang
-
Patent number: 6189482Abstract: The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 Å/minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400° C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.Type: GrantFiled: February 12, 1997Date of Patent: February 20, 2001Assignee: Applied Materials, Inc.Inventors: Jun Zhao, Lee Luo, Xiao Liang Jin, Jia-Xiang Wang, Talex Sajoto, Stefan Wolff, Leonid Selyutin, Ashok Sinha
-
Patent number: 6129044Abstract: The present invention provides an approach which provides an increase in the number of usable substrates with a film, such as titanium nitride, deposited thereon at a sufficient deposition rate and where the film meets uniformity and resistivity specifications as well as providing good step coverage. In accordance with an embodiment, the present invention provides an apparatus for substrate processing. The apparatus circulates a heat exchange medium through a passage in a chamber body of a vacuum chamber, and heats a heater pedestal having a surface for supporting the substrate to a heater temperature. The heat exchange medium has a heat exchange temperature of about 60.degree. C. or less. The the apparatus also flows a gas into the chamber at a flow rate to deposit a film on a substrate, where the flow rate provides an effective temperature of the substrate lower than the heater temperature and where the film meets uniformity and resistance specifications after deposition onto a number of substrates.Type: GrantFiled: October 6, 1999Date of Patent: October 10, 2000Assignee: Applied Materials, Inc.Inventors: Jun Zhao, Ashok Sinha, Avi Tepman, Mei Chang, Lee Luo, Alex Schreiber, Talex Sajoto, Stefan Wolff, Charles Dornfest, Michal Danek
-
Patent number: 6077562Abstract: The invention relates to an apparatus and process for the vaporization of liquid precursors and deposition of a film on a suitable substrate. Particularly contemplated is an apparatus and process for the deposition of a metal-oxide film, such as a barium, strontium, titanium oxide (BST) film, on a silicon wafer to make integrated circuit capacitors useful in high capacity dynamic memory modules.Type: GrantFiled: March 31, 1998Date of Patent: June 20, 2000Assignee: Applied Materials, Inc.Inventors: Charles Dornfest, Jun Zhao, Talex Sajoto, Lee Luo
-
Patent number: 6051286Abstract: The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.Type: GrantFiled: August 22, 1997Date of Patent: April 18, 2000Assignee: Applied Materials, Inc.Inventors: Jun Zhao, Lee Luo, Xiao Liang Jin, Jia-Xiang Wang, Stefan Wolff, Talex Sajoto
-
Patent number: 5993916Abstract: The present invention provides an approach which provides an increase in the number of usable substrates with a film, such as titanium nitride, deposited thereon at a sufficient deposition rate and where the film meets uniformity and resistivity specifications as well as providing good step coverage. In accordance with an embodiment, the present invention provides a method of substrate processing. The method includes steps of circulating a heat exchange medium through a passage in a chamber body of a vacuum chamber, and heating a heater pedestal having a surface for supporting the substrate to a heater temperature. The heat exchange medium has a heat exchange temperature of about 60.degree. C. or less.Type: GrantFiled: September 22, 1997Date of Patent: November 30, 1999Assignee: Applied Materials, Inc.Inventors: Jun Zhao, Lee Luo, Xiao Liang Jin
-
Patent number: 5994678Abstract: The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.Type: GrantFiled: February 12, 1997Date of Patent: November 30, 1999Assignee: Applied Materials, Inc.Inventors: Jun Zhao, Talex Sajoto, Leonid Selyutin, Charles Dornfest, Stefan Wolff, Lee Luo, Eller Juco
-
Patent number: 5983906Abstract: The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.Type: GrantFiled: August 22, 1997Date of Patent: November 16, 1999Assignee: Applied Materials, Inc.Inventors: Jun Zhao, Lee Luo, Jia-Xiang Wang, Xiao Liang Jin, Stefan Wolff, Talex Sajoto, Mei Chang, Paul Frederick Smith
-
Patent number: 5968379Abstract: The present invention provides systems, methods and apparatus for depositing titanium films at rates up to 200 .ANG./minute on semiconductor substrates from a titanium tetrachloride source. In accordance with an embodiment of the invention, a ceramic heater assembly with an integrated RF plane for bottom powered RF capability allows PECVD deposition at a temperature of at least 400.degree. C. for more efficient plasma treatment. A thermal choke isolates the heater from its support shaft, reducing the thermal gradient across the heater to reduce the risk of breakage and improving temperature uniformity of the heater. A deposition system incorporates a flow restrictor ring and other features that allow a 15 liters/minute flow rate through the chamber with minimal backside deposition and minimized deposition on the bottom of the chamber, thereby reducing the frequency of chamber cleanings, and reducing clean time and seasoning. Deposition and clean processes are also further embodiments of the present invention.Type: GrantFiled: February 12, 1997Date of Patent: October 19, 1999Assignee: Applied Materials, Inc.Inventors: Jun Zhao, Charles Dornfest, Talex Sajoto, Leonid Selyutin, Stefan Wolff, Lee Luo, Harold Mortensen, Richard Palicka
-
Patent number: 5964947Abstract: A substrate processing chamber, particularly a chemical vapor deposition (CVD) chamber used both for thermal deposition of a conductive material and a subsequently performed plasma process. The invention reduces thermal deposition of the conductive material in a pumping channel exhausting the chamber. The pumping channel is lined with various elements, some of which are electrically floating and which are designed so that conductive material deposited on these elements do not deleteriously affect a plasma generated for processing the wafer.Type: GrantFiled: May 16, 1997Date of Patent: October 12, 1999Assignee: Applied Materials, Inc.Inventors: Jun Zhao, Ashok Sinha, Avi Tepman, Mei Chang, Lee Luo, Alex Schreiber, Talex Sajoto, Stefan Wolff, Charles Dornfest, Michal Danek
-
Patent number: 5846332Abstract: A substrate processing chamber, particularly a chemical vapor deposition (CVD) chamber used both for thermal deposition of a conductive material and a subsequently performed plasma process. The invention reduces thermal deposition of the conductive material on peripheral portions of the pedestal supporting a wafer and in a pumping channel exhausting the chamber. A peripheral ring placed on the pedestal, preferably also used to center the wafer, is thermally isolated from the pedestal so that its temperature is kept substantially lower than that of the wafer. Despite its thermal isolation, the peripheral ring is electrically connected to the pedestal to prevent arcing. The pumping channel is lined with various elements, some of which are electrically floating and which are designed so that conductive material deposited on these elements do not deleteriously affect a plasma generated for processing the wafer.Type: GrantFiled: July 12, 1996Date of Patent: December 8, 1998Assignee: Applied Materials, Inc.Inventors: Jun Zhao, Ashok Sinha, Avi Tepman, Mei Chang, Lee Luo, Alex Schreiber, Talex Sajoto, Stefan Wolff, Charles Dornfest, Michal Danek