Patents by Inventor Leena Paivikki Buchwalter
Leena Paivikki Buchwalter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8314500Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting metallurgy including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.Type: GrantFiled: December 28, 2006Date of Patent: November 20, 2012Assignee: Ultratech, Inc.Inventors: Luc Belanger, Stephen L. Buchwalter, Leena Paivikki Buchwalter, Ajay P. Giri, Jonathan H. Griffith, Donald W. Henderson, Sung Kwon Kang, Eric H. Laine, Christian Lavoie, Paul A. Lauro, Valérie Anne Oberson, Da-Yuan Shih, Kamalesh K Srivastava, Michael J. Sullivan
-
Publication number: 20120270351Abstract: A method of removal of a first and second sacrificial layer wherein an O2 plasma or an O2-containing environment is introduced to a cavity and a gap region through a plurality of via holes in a cavity capping material.Type: ApplicationFiled: July 2, 2012Publication date: October 25, 2012Applicant: International Business Machines CorporationInventors: Leena Paivikki BUCHWALTER, Kevin Kok CHAN, Timothy Joseph DALTON, Christopher Vincent JAHNES, Jennifer Louise LUND, Kevin Shawn PETRARCA, James Louis SPEIDELL, James Francis ZIEGLER
-
Patent number: 8269291Abstract: A microelectromechanical system (MEMS) resonator or filter including a first conductive layer, one or more electrodes patterned in the first conductive layer which serve the function of signal input, signal output, or DC biasing, or some combination of these functions, an evacuated cavity, a resonating member comprised of a lower conductive layer and an upper structural layer, a first air gap between the resonating member and one or more of the electrodes, an upper membrane covering the cavity, and a second air gap between the resonating member and the upper membrane.Type: GrantFiled: January 14, 2011Date of Patent: September 18, 2012Assignee: International Business Machines CorporationInventors: Leena Paivikki Buchwalter, Kevin Kok Chan, Timothy Joseph Dalton, Christopher Vincent Jahnes, Jennifer Louise Lund, Kevin Shawn Petraraca, James Louis Speidell, James Francis Ziegler
-
Patent number: 8187923Abstract: A laser release and glass chip removal process for a integrated circuit module avoiding carrier edge cracking is provided.Type: GrantFiled: July 3, 2008Date of Patent: May 29, 2012Assignee: International Business Machines CorporationInventors: Paul Stephen Andry, Leena Paivikki Buchwalter, Matthew J. Farinelli, Sherif A. Goma, Raymond R. Horton, Edmund J. Sprogis
-
Patent number: 7943412Abstract: A method of formation of a microelectromechanical system (MEMS) resonator or filter which is compatible with integration with any analog, digital, or mixed-signal integrated circuit (IC) process, after or concurrently with the formation of the metal interconnect layers in those processes, by virtue of its materials of composition, processing steps, and temperature of fabrication is presented. The MEMS resonator or filter incorporates a lower metal level, which forms the electrodes of the MEMS resonator or filter, that may be shared with any or none of the existing metal interconnect levels on the IC. It further incorporates a resonating member that is comprised of at least one metal layer for electrical connection and electrostatic actuation, and at least one dielectric layer for structural purposes. The gap between the electrodes and the resonating member is created by the deposition and subsequent removal of a sacrificial layer comprised of a carbon-based material.Type: GrantFiled: December 10, 2002Date of Patent: May 17, 2011Assignee: International Business Machines CorporationInventors: Leena Paivikki Buchwalter, Kevin Kok Chan, Timothy Joseph Dalton, Christopher Vincent Jahnes, Jennifer Louise Lund, Kevin Shawn Petrarca, James Louis Speidell, James Francis Ziegler
-
Publication number: 20110109405Abstract: A microelectromechanical system (MEMS) resonator or filter including a first conductive layer, one or more electrodes patterned in the first conductive layer which serve the function of signal input, signal output, or DC biasing, or some combination of these functions, an evacuated cavity, a resonating member comprised of a lower conductive layer and an upper structural layer, a first air gap between the resonating member and one or more of the electrodes, an upper membrane covering the cavity, and a second air gap between the resonating member and the upper membrane.Type: ApplicationFiled: January 14, 2011Publication date: May 12, 2011Applicant: International Business Machines CorporationInventors: Leena Paivikki Buchwalter, Kevin Kok Chan, Timothy Joseph Dalton, Christopher Vincent Jahnes, Jennifer Louise Lund, Kevin Shawn Petrarca, James Louis Speidell, James Francis Ziegler
-
Patent number: 7932169Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting metallurgy including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.Type: GrantFiled: October 5, 2009Date of Patent: April 26, 2011Assignee: International Business Machines CorporationInventors: Luc Belanger, Stephen L. Buchwalter, Leena Paivikki Buchwalter, Ajay P. Giri, Jonathan H. Griffith, Donald W. Henderson, Sung Kwon Kang, Eric H. Laine, Christian Lavoie, Paul A. Lauro, Valérie Anne Oberson, Da-Yuan Shih, Kamalesh K Srivastava, Michael J. Sullivan
-
Patent number: 7815968Abstract: The present disclosure relates generally to semiconductor, integrated circuits, and particularly, but not by way of limitation, to centrifugal methods of filling high-aspect ratio vias and trenches with powders, pastes, suspensions of materials to act as any of a conducting, structural support, or protective member of an electronic component.Type: GrantFiled: October 8, 2008Date of Patent: October 19, 2010Assignee: International Business Machines CorporationInventors: Gareth Hougham, Leena Paivikki Buchwalter, Stephen L. Buchwalter, Jon Casey, Claudius Feger, Matteo Flotta, Jeffrey D. Gelmore, Kathleen C. Hinge, Anurag Jain, Sung K. Kang, John U. Knickerbocker
-
Publication number: 20100062597Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting metallurgy including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.Type: ApplicationFiled: October 5, 2009Publication date: March 11, 2010Inventors: Luc Belanger, Stephen L. Buchwalter, Leena Paivikki Buchwalter, Ajay P. Giri, Jonathan H. Griffith, Donald W. Henderson, Sung Kwon Kang, Eric H. Laine, Christian Lavoie, Paul A. Lauro, Valérie Anne Oberson, Da-Yuan Shih, Kamalesh K. Srivastava, Michael J. Sullivan
-
Patent number: 7615405Abstract: An electronic dive and method of fabricating an electronic device. The method including placing a placement guide over a top surface of a module substrate, the placement guide having a guide opening, the guide opening extending from a top surface of the placement guide to a bottom surface of the placement guide; aligning the placement guide to an integrated circuit chip position on the module substrate; fixing the placement guide to the module substrate; placing an integrated circuit chip in the guide opening, sidewalls of the placement guide opening constraining electrically conductive bonding structures on bottom surface of the integrated circuit chip to self-align to an electrically conductive module substrate contact pad on the top surface of the module substrate in the integrated circuit chip position; and bonding the bonding structures to the module substrate contact pads, the bonding structures and the module substrate contact pads in direct physical and electrical contact after the bonding.Type: GrantFiled: October 15, 2007Date of Patent: November 10, 2009Assignee: International Business Machines CorporationInventors: Paul Stephen Andry, Leena Paivikki Buchwalter, Raymond R. Horton, John Ulrich Knickerbocker, Cornelia K. Tsang, Steven Lorenz Wright
-
Publication number: 20090108381Abstract: A method of formation of a microelectromechanical system (MEMS) resonator or filter which is compatible with integration with any analog, digital, or mixed-signal integrated circuit (IC) process, after or concurrently with the formation of the metal interconnect layers in those processes, by virtue of its materials of composition, processing steps, and temperature of fabrication is presented. The MEMS resonator or filter incorporates a lower metal level, which forms the electrodes of the MEMS resonator or filter, that may be shared with any or none of the existing metal interconnect levels on the IC. It further incorporates a resonating member that is comprised of at least one metal layer for electrical connection and electrostatic actuation, and at least one dielectric layer for structural purposes. The gap between the electrodes and the resonating member is created by the deposition and subsequent removal of a sacrificial layer comprised of a carbon-based material.Type: ApplicationFiled: December 10, 2002Publication date: April 30, 2009Applicant: International Business Machines CorporationInventors: Leena Paivikki Buchwalter, Kevin Kok Chan, Timothy Joseph Dalton, Christopher Vincent Jahnes, Jennifer Louise Lund, Kevin Shawn Petrarca, James Louis Speidell, James Francis Ziegler
-
Patent number: 7456046Abstract: A method of producing flexible interconnections for integrated circuits, and, in particular, the forming of flexible or compliant interconnections preferably by a laser-assisted chemical vapor deposition process in semiconductor or glass substrate-based carriers which are employed for mounting and packaging multiple integrated circuit chips and selectively, other devices in the technology.Type: GrantFiled: February 23, 2005Date of Patent: November 25, 2008Assignee: International Business Machines CorporationInventors: Leena Paivikki Buchwalter, Russell A. Budd, Chirag S. Patel
-
Patent number: 7452568Abstract: The present disclosure relates generally to semiconductor, integrated circuits, and particularly, but not by way of limitation, to centrifugal methods of filling high-aspect ratio vias and trenches with powders, pastes, suspensions of materials to act as any of a conducting, structural support, or protective member of an electronic component.Type: GrantFiled: February 4, 2005Date of Patent: November 18, 2008Assignee: International Business Machines CorporationInventors: Gareth Hougham, Leena Paivikki Buchwalter, Stephen L. Buchwalter, Jon Casey, Claudius Feger, Matteo Flotta, Jeffrey D. Gelorme, Kathleen C. Hinge, Anurag Jain, Sung K. Kang, John U. Knickerbocker
-
Publication number: 20080217778Abstract: A method of producing flexible interconnections for integrated circuits, and, in particular, the forming of flexible or compliant interconnections preferably by a laser-assisted chemical vapor deposition process in semiconductor or glass substrate-based carriers which are employed for mounting and packaging multiple integrated circuit chips and selectively, other devices in the technology.Type: ApplicationFiled: May 13, 2008Publication date: September 11, 2008Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Leena Paivikki Buchwalter, Russell A. Budd, Chirag S. Patel
-
Publication number: 20080182362Abstract: An electronic dive and method of fabricating an electronic device. The method including placing a placement guide over a top surface of a module substrate, the placement guide having a guide opening, the guide opening extending from a top surface of the placement guide to a bottom surface of the placement guide; aligning the placement guide to an integrated circuit chip position on the module substrate; fixing the placement guide to the module substrate; placing an integrated circuit chip in the guide opening, sidewalls of the placement guide opening constraining electrically conductive bonding structures on bottom surface of the integrated circuit chip to self-align to an electrically conductive module substrate contact pad on the top surface of the module substrate in the integrated circuit chip position; and bonding the bonding structures to the module substrate contact pads, the bonding structures and the module substrate contact pads in direct physical and electrical contact after the bonding.Type: ApplicationFiled: October 15, 2007Publication date: July 31, 2008Inventors: Paul Stephen Andry, Leena Paivikki Buchwalter, Raymond R. Horton, John Ulrich Knickerbocker, Cornelia K. Tsang, Steven Lorenz Wright
-
Publication number: 20080157395Abstract: An interconnection structure suitable for flip-chip attachment of microelectronic device chips to packages, comprising a two, three or four layer ball-limiting metallurgy including an adhesion/reaction barrier layer, and having a solder wettable layer reactive with components of a tin-containing lead free solder, so that the solderable layer can be totally consumed during soldering, but a barrier layer remains after being placed in contact with the lead free solder during soldering. One or more lead-free solder balls is selectively situated on the solder wetting layer, the lead-free solder balls comprising tin as a predominant component and one or more alloying components.Type: ApplicationFiled: December 28, 2006Publication date: July 3, 2008Inventors: Luc Belanger, Stephen L. Buchwalter, Leena Paivikki Buchwalter, Ajay P. Giri, Jonathan H. Griffith, Donald W. Henderson, Sung Kwon Kang, Eric H. Laine, Christian Lavoie, Paul A. Lauro, Valerie Anne Oberson, Da-Yuan Shih, Kamalesh K. Srivastava, Michael J. Sullivan
-
Patent number: 7282391Abstract: An electronic dive and method of fabricating an electronic device. The method including placing a placement guide over a top surface of a module substrate, the placement guide having a guide opening, the guide opening extending from a top surface of the placement guide to a bottom surface of the placement guide; aligning the placement guide to an integrated circuit chip position on the module substrate; fixing the placement guide to the module substrate; placing an integrated circuit chip in the guide opening, sidewalls of the placement guide opening constraining electrically conductive bonding structures on bottom surface of the integrated circuit chip to self-align to an electrically conductive module substrate contact pad on the top surface of the module substrate in the integrated circuit chip position; and bonding the bonding structures to the module substrate contact pads, the bonding structures and the module substrate contact pads in direct physical and electrical contact after the bonding.Type: GrantFiled: March 21, 2006Date of Patent: October 16, 2007Assignee: International Business Machines CorporationInventors: Paul Stephen Andry, Leena Paivikki Buchwalter, Raymond R. Horton, John Ulrich Knickerbocker, Cornelia K. Tsang, Steven Lorenz Wright
-
Patent number: 7276787Abstract: A carrier structure and method for fabricating a carrier structure with through-vias each having a conductive structure with an effective coefficient of thermal expansion which is less than or closely matched to that of the substrate, and having an effective elastic modulus value which is less than or closely matches that of the substrate. The conductive structure may include concentric via fill areas having differing materials disposed concentrically therein, a core of the substrate material surrounded by an annular ring of conductive material, a core of CTE-matched non-conductive material surrounded by an annular ring of conductive material, a conductive via having an inner void with low CTE, or a full fill of a conductive composite material such as a metal-ceramic paste which has been sintered or fused.Type: GrantFiled: December 5, 2003Date of Patent: October 2, 2007Assignee: International Business Machines CorporationInventors: Daniel Charles Edelstein, Paul Stephen Andry, Leena Paivikki Buchwalter, Jon Alfred Casey, Sherif A. Goma, Raymond R. Horton, Gareth Geoffrey Hougham, Michael Wayne Lane, Xiao Hu Liu, Chirag Suryakant Patel, Edmund Juris Sprogis, Michelle Leigh Steen, Brian Richard Sundlof, Cornelia K. Tsang, George Frederick Walker
-
Patent number: 7019402Abstract: This disclosure teaches a method of filling deep vias or capping deep conducting paste filled vias in silicon or glass substrate using laser assisted chemical vapor deposition of metals. This method uses a continuous wave or pulsed laser to heat the via bottom and the growing metal fill selectively by selecting the laser wavelength such that silicon and/or glass do not absorb the energy of the laser in any appreciable manner to cause deposition in the field. Alternatively holographic mask or an array of micro lenses may be used to focus the laser beams to the vias to fill them with metal. The substrate is moved in a controlled manner in the z-direction away from the laser at about the rate of deposition thus causing the laser heating to be focused on the surface region of the growing metal fill.Type: GrantFiled: October 17, 2003Date of Patent: March 28, 2006Assignee: International Business Machines CorporationInventors: Paul Stephen Andry, Leena Paivikki Buchwalter, Russell Alan Budd, Thomas Anthony Wassick
-
Patent number: 6818843Abstract: Microswitch, comprising a base element (G) with a contact surface (KG) and an electrode (EG), and a switching element (S) with a contact surface (KS) and an electrode (ES) disposed opposite the electrode (EG) of the base element (G) at a distance (g). The switching element (S) is provided with a spring constant and is connected at least with a part of its edge portion with the base element (G) in a fixed manner. The contact surfaces (KG, KS) form a switching contact which is closable against a reaction force caused by the spring constant by means of a voltage applied to the electrodes (EG, ES). The base element (G) and the switching element (S) each comprise an auxiliary electrode (HG, HS) at a distance (a) from the electrode (EG, ES), to which a voltage can be applied. For opening the switching contact the electrodes (EG, ES) have a first voltage potential (U1) and the auxiliary electrodes have a second voltage potential (U2) of the voltage.Type: GrantFiled: February 10, 2003Date of Patent: November 16, 2004Assignee: Telefonaktiebolaget LM EricssonInventors: Michael Meixner, Leena Paivikki Buchwalter, Jennifer Louise Lund, Hariklia Deligianni