Patents by Inventor Lehel Ferenczi

Lehel Ferenczi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240078669
    Abstract: Methods and systems are provided for inferring thickness and volume of one or more object classes of interest in two-dimensional (2D) medical images, using deep neural networks. In an exemplary embodiment, a thickness of an object class of interest may be inferred by acquiring a 2D medical image, extracting features from the 2D medical image, mapping the features to a segmentation mask for an object class of interest using a first convolutional neural network (CNN), mapping the features to a thickness mask for the object class of interest using a second CNN, wherein the thickness mask indicates a thickness of the object class of interest at each pixel of a plurality of pixels of the 2D medical image; and determining a volume of the object class of interest based on the thickness mask and the segmentation mask.
    Type: Application
    Filed: October 30, 2023
    Publication date: March 7, 2024
    Inventors: Tao Tan, Máté Fejes, Gopal Avinash, Ravi Soni, Bipul Das, Rakesh Mullick, Pál Tegzes, Lehel Ferenczi, Vikram Melapudi, Krishna Seetharam Shriram
  • Patent number: 11842485
    Abstract: Methods and systems are provided for inferring thickness and volume of one or more object classes of interest in two-dimensional (2D) medical images, using deep neural networks. In an exemplary embodiment, a thickness of an object class of interest may be inferred by acquiring a 2D medical image, extracting features from the 2D medical image, mapping the features to a segmentation mask for an object class of interest using a first convolutional neural network (CNN), mapping the features to a thickness mask for the object class of interest using a second CNN, wherein the thickness mask indicates a thickness of the object class of interest at each pixel of a plurality of pixels of the 2D medical image; and determining a volume of the object class of interest based on the thickness mask and the segmentation mask.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: December 12, 2023
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Tao Tan, Máté Fejes, Gopal Avinash, Ravi Soni, Bipul Das, Rakesh Mullick, Pál Tegzes, Lehel Ferenczi, Vikram Melapudi, Krishna Seetharam Shriram
  • Publication number: 20230306601
    Abstract: Methods and systems are provided for segmenting structures in medical images. In one embodiment, a method includes receiving an input dataset including a set of medical images, a structure list specifying a set of structures to be segmented, and a segmentation protocol, performing an input check on the input dataset, determining whether each medical image of the set of medical images has passed the input check and removing any medical images from the set of medical images that do not pass the input check to form a final set of medical images, segmenting each structure from the structure list using one or more segmentation models and the final set of medical images, receiving a set of segmentations output from the one or more segmentation models, processing the set of segmentations to generate a final set of segmentations, and displaying and/or saving in memory the final set of segmentations.
    Type: Application
    Filed: March 23, 2022
    Publication date: September 28, 2023
    Inventors: László Ruskó, Vanda Czipczer, Bernadett Kolozsvári, Richárd Zsámboki, Tao Tan, Balázs Péter Cziria, Attila Márk Rádics, Lehel Ferenczi, Fei Mian, Hongxiang YI, Florian Wiesinger
  • Publication number: 20230252614
    Abstract: Techniques are described for optimizing deep learning model performance using image harmonization as a pre-processing step. According to an embodiment, a method comprises decomposing, by a system operatively coupled to a processor, an input image into sub-images. The method further comprises harmonizing the sub-images with corresponding reference sub-images of at least one reference image based on two or more different statistical values respectively calculated for the sub-images and the corresponding reference-sub images, resulting in transformation of the sub-images into modified sub-images images. In some implementations, the modified sub-images can be combined into a harmonized image having a more similar appearance to the at least one reference image relative to the input image.
    Type: Application
    Filed: April 21, 2023
    Publication date: August 10, 2023
    Inventors: Tao Tan, Pál Tegzes, Levente Imre Török, Lehel Ferenczi, Gopal B. Avinash, László Ruskó, Gireesha Chinthamani Rao, Khaled Younis, Soumya Ghose
  • Patent number: 11669945
    Abstract: Techniques are described for optimizing deep learning model performance using image harmonization as a pre-processing step. According to an embodiment, a method comprises decomposing, by a system operatively coupled to a processor, an input image into sub-images. The method further comprises harmonizing the sub-images with corresponding reference sub-images of at least one reference image based on two or more different statistical values respectively calculated for the sub-images and the corresponding reference-sub images, resulting in transformation of the sub-images into modified sub-images images. In some implementations, the modified sub-images can be combined into a harmonized image having a more similar appearance to the at least one reference image relative to the input image.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: June 6, 2023
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Tao Tan, Pál Tegzes, Levente Imre Török, Lehel Ferenczi, Gopal B. Avinash, László Ruskó, Gireesha Chinthamani Rao, Khaled Younis, Soumya Ghose
  • Publication number: 20230041575
    Abstract: Systems/techniques that facilitate AI-based region-of-interest masks for improved data reconstructions are provided. In various embodiments, a system can access a set of two-dimensional medical scan projections. In various aspects, the system can generate a set of two-dimensional region-of-interest masks respectively corresponding to the set of two-dimensional medical scan projections. In various instances, the system can generate a region-of-interest visualization based on the set of two-dimensional region-of-interest masks and the set of two-dimensional medical scan projections. In various cases, the system can generate the set of two-dimensional region-of-interest masks by executing a machine learning segmentation model on the set of two-dimensional medical scan projections.
    Type: Application
    Filed: August 3, 2021
    Publication date: February 9, 2023
    Inventors: Tao Tan, Buer Qi, Dejun Wang, Gopal B. Avinash, Gireesha Chinthamani Rao, German Guillermo Vera Gonzalez, Lehel Ferenczi
  • Patent number: 11537885
    Abstract: Systems and techniques that facilitate freeze-out as a regularizer in training neural networks are presented. A system can include a memory and a processor that executes computer executable components. The computer executable components can include: an assessment component that identifies units of a neural network, a selection component that selects a subset of units of the neural network, and a freeze-out component that freezes the selected subset of units of the neural network so that weights of output connections from the frozen subset of units will not be updated for a training run.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: December 27, 2022
    Assignee: GE PRECISION HEALTHCARE LLC
    Inventors: Tao Tan, Min Zhang, Gopal Biligeri Avinash, Lehel Ferenczi, Levente Imre Török, Pál Tegzes
  • Publication number: 20220284570
    Abstract: Methods and systems are provided for inferring thickness and volume of one or more object classes of interest in two-dimensional (2D) medical images, using deep neural networks. In an exemplary embodiment, a thickness of an object class of interest may be inferred by acquiring a 2D medical image, extracting features from the 2D medical image, mapping the features to a segmentation mask for an object class of interest using a first convolutional neural network (CNN), mapping the features to a thickness mask for the object class of interest using a second CNN, wherein the thickness mask indicates a thickness of the object class of interest at each pixel of a plurality of pixels of the 2D medical image; and determining a volume of the object class of interest based on the thickness mask and the segmentation mask.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Inventors: Tao Tan, Máté Fejes, Gopal Avinash, Ravi Soni, Bipul Das, Rakesh Mullick, Pál Tegzes, Lehel Ferenczi, Vikram Melapudi, Krishna Seetharam Shriram
  • Publication number: 20210334598
    Abstract: Techniques are described for optimizing deep learning model performance using image harmonization as a pre-processing step. According to an embodiment, a method comprises decomposing, by a system operatively coupled to a processor, an input image into sub-images. The method further comprises harmonizing the sub-images with corresponding reference sub-images of at least one reference image based on two or more different statistical values respectively calculated for the sub-images and the corresponding reference-sub images, resulting in transformation of the sub-images into modified sub-images images. In some implementations, the modified sub-images can be combined into a harmonized image having a more similar appearance to the at least one reference image relative to the input image.
    Type: Application
    Filed: April 27, 2020
    Publication date: October 28, 2021
    Inventors: Tao Tan, Pál Tegzes, Levente Imre Török, Lehel Ferenczi, Gopal B. Avinash, László Ruskó, Gireesha Chinthamani Rao, Khaled Younis, Soumya Ghose
  • Publication number: 20210232909
    Abstract: Systems and techniques that facilitate freeze-out as a regularizer in training neural networks are presented. A system can include a memory and a processor that executes computer executable components. The computer executable components can include: an assessment component that identifies units of a neural network, a selection component that selects a subset of units of the neural network, and a freeze-out component that freezes the selected subset of units of the neural network so that weights of output connections from the frozen subset of units will not be updated for a training run.
    Type: Application
    Filed: January 27, 2020
    Publication date: July 29, 2021
    Inventors: Tao Tan, Min Zhang, Gopal Biligeri Avinash, Lehel Ferenczi, Levente Imre Török, Pál Tegzes
  • Publication number: 20070189589
    Abstract: Systems, methods and apparatus are provided through which in some embodiments, a structure manager explicitly creates a container of graphical objects of anatomical regions by adding a structure, or the structure manager implicitly creates graphical objects of a group of anatomical regions through an organ segmentation process.
    Type: Application
    Filed: February 11, 2006
    Publication date: August 16, 2007
    Applicant: General Electric Company
    Inventors: Marta Fidrich, Attila Ferik, Lehel Ferenczi, Judit Bak-Kanyo
  • Publication number: 20070189590
    Abstract: Systems, methods and apparatus are provided through which in some embodiments, a structure manager explicitly creates a container of graphical objects of anatomical regions by adding a structure, or the structure manager implicitly creates graphical objects of a group of anatomical regions through an organ segmentation process.
    Type: Application
    Filed: February 11, 2006
    Publication date: August 16, 2007
    Applicant: General Electric Company
    Inventors: Marta Fidrich, Attila Ferik, Lehel Ferenczi, Judit Bak-Kanyo