Patents by Inventor Leif Christoffersen

Leif Christoffersen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11879439
    Abstract: A wind turbine drive train component (22) comprising a rotating shaft (61) with a radial seal (50) is provided. The radial seal (50) comprises a stationary part and a rotating part. The stationary part comprises a ring (51) with an inner edge and an outer edge, the inner edge being configured for contactlessly surrounding the shaft (61). The rotary part comprising a disc (52), coaxially connected to the shaft (61) for rotation therewith and comprising a flange (53) that wraps around the outer edge of the ring (51). The radial seal (50) further comprises an annular air lock gap (55) for containing an amount of lubrication fluid (64) and thereby closing off the air lock gap (55) when the rotary part rotates at a rotational speed above a predetermined threshold speed, the annular air lock gap (55) being formed by an inner surface of the flange (53), an outer part of the opposing parallel surface of the disc (52) and the outer edge of the ring (51).
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: January 23, 2024
    Assignee: Vestas Wind Systems A/S
    Inventors: Leif Christoffersen, Lars Langvardt Krogh, Lars Skifter, Thomas Paw Buus
  • Patent number: 11466659
    Abstract: A multirotor wind turbine (1) comprising a yaw arrangement (6) and a tower (2) is disclosed. A load carrying structure comprises first and second arms (3) extending from the yaw arrangement (6) and carrying energy generating units (4). the yaw arrangement (6) comprises an outer wall part (7) arranged coaxially with the tower (2) and forming a closed ring extending circumferentially about an outer surface of the tower (2), thereby forming a space (8) between the tower (2) and the outer wall part (7). The outer wall part (7) and the outer surface of the tower (2) are rotatable relative to each other.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: October 11, 2022
    Assignee: Vestas Wind Systems A/S
    Inventors: Torben Ladegaard Baun, Jesper Lykkegaard Neubauer, Leif Christoffersen, Per Holten-Møller, Anders Yde Wollesen
  • Publication number: 20220056890
    Abstract: A logistics system for a multirotor wind turbine (1) is disclosed. The multirotor wind turbine (1) comprises two or more energy generating units (4), each mounted on an arm (3) extending from a tower (2) of the multirotor wind turbine (1). A transport system (14, 30, 31, 32, 33, 34, 36) interconnects a lower interior part of the tower (2) with each of the energy generating units (4). A plurality of transport containers (15) is connectable to the transport system (14, 30, 31, 32, 33, 34, 36) and configured to hold equipment (26) to be transported. A control unit is configured to receive information regarding contents and position of the transport containers (15), and to plan transport of the transport containers (15) via the transport system (14, 30, 31, 32, 33, 34, 36), based on a service plan for the multirotor wind turbine (1).
    Type: Application
    Filed: November 13, 2019
    Publication date: February 24, 2022
    Inventors: Torben Ladegaard Baun, Per Holten-Møller, Peter Bøttcher, Jesper Lykkegaard Neubauer, Brian Jørgensen, Leif Christoffersen
  • Publication number: 20220025845
    Abstract: A multirotor wind turbine (1) comprising a yaw arrangement (6) and a tower (2) is disclosed. A load carrying structure comprises first and second arms (3) extending from the yaw arrangement (6) and carrying energy generating units (4). the yaw arrange-ment (6) comprises an outer wall part (7) arranged coaxially with the tower (2) and forming a closed ring extending circumferentially about an outer surface of the tower (2), thereby forming a space (8) between the tower (2) and the outer wall part (7). The outer wall part (7) and the outer surface of the tower (2) are rotatable relative to each other.
    Type: Application
    Filed: November 13, 2019
    Publication date: January 27, 2022
    Inventors: Torben Ladegaard Baun, Jesper Lykkegaard Neubauer, Leif Christoffersen, Per Holten-Møller, Anders Yde Wollesen
  • Patent number: 11181097
    Abstract: A multirotor wind turbine (1) comprising a tower structure (2) and at least one load carrying structure (3), each load carrying structure (3) being arranged to carry two or more energy generating units (5), is disclosed. The wind turbine (1) further comprises a yawing arrangement (6) comprising a first part (9) being fixedly connected to the tower structure (2) and a second part (10) being fixedly connected to at least one of the load carrying structure(s) (3). The first part (9) and the second part (10) are configured to perform rotating movements relative to each other, thereby allowing the load carrying structure (3) to perform yawing movements relative to the tower structure (2). At least one guy wire (7) is connected between an anchoring point (8) at the ground and the first part (9) of the yawing arrangement (6). The invention further provides a yawing arrangement (6) for such a multirotor wind turbine (1).
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: November 23, 2021
    Assignee: Vestas Wind Systems A/S
    Inventors: Torben Ladegaard Baun, Peter Bøtteher, Jesper Lykkegaard Neubauer, Leif Christoffersen
  • Publication number: 20210277866
    Abstract: A multirotor wind turbine (1) comprising a tower structure (2) and at least one load carrying structure (3), each load carrying structure (3) being arranged to carry two or more energy generating units (5), is disclosed. The wind turbine (1) further comprises a yawing arrangement (6) comprising a first part (9) being fixedly connected to the tower structure (2) and a second part (10) being fixedly connected to at least one of the load carrying structure(s) (3). The first part (9) and the second part (10) are configured to perform rotating movements relative to each other, thereby allowing the load carrying structure (3) to perform yawing movements relative to the tower structure (2). At least one guy wire (7) is connected between an anchoring point (8) at the ground and the first part (9) of the yawing arrangement (6). The invention further provides a yawing arrangement (6) for such a multirotor wind turbine (1).
    Type: Application
    Filed: June 12, 2018
    Publication date: September 9, 2021
    Inventors: Torben Ladegaard Baun, Peter Bøttcher, Jesper Lykkegaard Neubauer, Leif Christoffersen
  • Publication number: 20210163268
    Abstract: A method of handling a wind turbine component (112) in a wind turbine (101) comprising a tower (102) extending in an upwards direction, a load carrying structure (103, 103?, 103?) fixed to the tower and extending in an outwards direction transverse to the upwards direction. According to the method, a crane (21) with a fixation structure (22) is provided and raised to the level of the load carrying structure by use of a hoisting rope. Once in position, the crane is used for handling the wind turbine component.
    Type: Application
    Filed: December 21, 2018
    Publication date: June 3, 2021
    Inventors: Torben Ladegaard Baun, Jesper Lykkegaard Neubauer, Jonas Lerche Schomacker, Brian Jørgensen, Leif Christoffersen
  • Publication number: 20210102528
    Abstract: A wind turbine drive train component (22) comprising a rotating shaft (61) with a radial seal (50) is provided. The radial seal (50) comprises a stationary part and a rotating part. The stationary part comprises a ring (51) with an inner edge and an outer edge, the inner edge being configured for contactlessly surrounding the shaft (61). The rotary part comprising a disc (52), coaxially connected to the shaft (61) for rotation therewith and comprising a flange (53) that wraps around the outer edge of the ring (51). The radial seal (50) further comprises an annular air lock gap (55) for containing an amount of lubrication fluid (64) and thereby closing off the air lock gap (55) when the rotary part rotates at a rotational speed above a predetermined threshold speed, the annular air lock gap (55) being formed by an inner surface of the flange (53), an outer part of the opposing parallel surface of the disc (52) and the outer edge of the ring (51).
    Type: Application
    Filed: December 10, 2018
    Publication date: April 8, 2021
    Inventors: Leif Christoffersen, Lars Langvardt Krogh, Lars Skifter, Thomas Paw Buus
  • Patent number: 10260478
    Abstract: The present invention provides a horizontal axis wind turbine comprising a tower, a nacelle mounted on top of the tower, and a rotor rotationally mounted to the nacelle. The rotor comprises a hub carrying a plurality of blades. Furthermore, the rotor comprises a spinner covering the hub and defining a space between the spinner and the hub. The spinner and hub are sized such that the space allows service personnel to work within the space. A service floor for supporting the service personnel is provided in the space. The service floor provides a substantially plane support structure.
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: April 16, 2019
    Assignee: Vestas Wind Systems A/S
    Inventor: Leif Christoffersen
  • Patent number: 9631605
    Abstract: A pitch system (20) for rotating a blade (4) of a wind turbine relative to a hub (6) generally comprises a bearing (22) having an inner bearing ring (30) configured to be mounted to the hub and an outer bearing ring (32) configured to be mounted to the blade. A first coupling member (24) positioned between the hub and inner bearing ring extends radially inward. A second coupling member (26) positioned between the blade and outer bearing ring extends radially inward and over the inner bearing ring. A drive system (28) includes a first drive member (34) coupled to the first coupling member and a first driven member (36) coupled to the second coupling member. The first drive member is configured to move the first driven member to rotate the outer bearing ring relative to the inner bearing ring and thereby pitch the blade.
    Type: Grant
    Filed: November 25, 2011
    Date of Patent: April 25, 2017
    Assignee: Vestas Wind Systems A/S
    Inventors: Jesper Lykkegaard Neubauer, Ole Mølgaard Jeppesen, Robert Rowntree, Leif Christoffersen, Peter Bøttcher, Gerry Madden
  • Patent number: 9587623
    Abstract: A wind turbine is described which comprises a tower, a nacelle mounted to the top of the tower, and a rotor mounted to the nacelle. The rotor comprises two or more blades mounted to a central hub. The hub supports two or more annular pitch bearings associated respectively with the two or more blades. Each pitch bearing defines a bearing plane inclined at a first angle with respect to a horizontal plane when the respective blade is oriented in a downwardly direction in alignment with the tower. Each pitch bearing is spanned by a hub plate; and a work platform integral with or mounted to the hub plate lies generally in a plane at a second angle to the horizontal plane when the respective blade is oriented in a downwardly direction in alignment with the tower, which second angle is less than the first angle. The work platform provides a substantially horizontal platform for use by maintenance personnel when installing or servicing components in and around the hub.
    Type: Grant
    Filed: May 1, 2013
    Date of Patent: March 7, 2017
    Assignee: Vestas Wind Systems A/S
    Inventors: Leif Christoffersen, Torben Friis Baun, Jesper Lykkegaard Neubauer
  • Publication number: 20150285218
    Abstract: The present invention provides a horizontal axis wind turbine comprising a tower, a nacelle mounted on top of the tower, and a rotor rotationally mounted to the nacelle. The rotor comprises a hub carrying a plurality of blades. Furthermore, the rotor comprises a spinner covering the hub and defining a space between the spinner and the hub. The spinner and hub are sized such that the space allows service personnel to work within the space. A service floor for supporting the service personnel is provided in the space. The service floor provides a substantially plane support structure.
    Type: Application
    Filed: October 18, 2013
    Publication date: October 8, 2015
    Inventor: Leif Christoffersen
  • Publication number: 20150110631
    Abstract: A wind turbine is described which comprises a tower, a nacelle mounted to the top of the tower, and a rotor mounted to the nacelle. The rotor comprises two or more blades mounted to a central hub. The hub supports two or more annular pitch bearings associated respectively with the two or more blades. Each pitch bearing defines a bearing plane inclined at a first angle with respect to a horizontal plane when the respective blade is oriented in a downwardly direction in alignment with the tower. Each pitch bearing is spanned by a hub plate; and a work platform integral with or mounted to the hub plate lies generally in a plane at a second angle to the horizontal plane when the respective blade is oriented in a downwardly direction in alignment with the tower, which second angle is less than the first angle. The work platform provides a substantially horizontal platform for use by maintenance personnel when installing or servicing components in and around the hub.
    Type: Application
    Filed: May 1, 2013
    Publication date: April 23, 2015
    Inventors: Leif Christoffersen, Torben Friis Baun, Jesper Lykkegaard Andersen
  • Publication number: 20140301847
    Abstract: A pitch system (20) for rotating a blade (4) of a wind turbine relative to a hub (6) generally comprises a bearing (22) having an inner bearing ring (30) configured to be mounted to the hub and an outer bearing ring (32) configured to be mounted to the blade. A first coupling member (24) positioned between the hub and inner bearing ring extends radially inward. A second coupling member (26) positioned between the blade and outer bearing ring extends radially inward and over the inner bearing ring. A drive system (28) includes a first drive member (34) coupled to the first coupling member and a first driven member (36) coupled to the second coupling member. The first drive member is configured to move the first driven member to rotate the outer bearing ring relative to the inner bearing ring and thereby pitch the blade.
    Type: Application
    Filed: November 25, 2011
    Publication date: October 9, 2014
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Jesper Lykkegaard Neubauer, Ole Mølgaard Jeppesen, Robert Rowntree, Leif Christoffersen, Peter Bøttcher, Gerry Madden
  • Patent number: D699184
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: February 11, 2014
    Assignee: Vestas Wind Systems A/S
    Inventor: Leif Christoffersen