Patents by Inventor Leland G. Close

Leland G. Close has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6584668
    Abstract: Durable non-electrically conductive metal treatments (such as coatings or finishes) for yarns and textile fabrics. Such treatments preferably comprise silver and/or silver ions; however, other metals, such as zinc, iron, copper, nickel, cobalt, aluminum, gold, manganese, magnesium, and the like, may also be present or alternatively utilized. Such a treatment provides, as one example, an antimicrobial fiber and/or textile fabric which remains on the surface and does not permit electrical conductivity over the surface. The treatment is extremely durable on such substrates; after a substantial number of standard launderings and dryings, the treatment does not wear away in any appreciable amount and thus the substrate retains its antimicrobial activity (or other property).
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: July 1, 2003
    Assignee: Milliken & Company
    Inventors: David E. Green, Dirk L. Van Hyning, Leland G. Close, Jr., Shulong Li, Robert J. Goulet
  • Publication number: 20030118733
    Abstract: Broadly defined sol-gel films for the coating of solid substrates, wherein such sol-gel films provide effective and durable antimicrobial properties, are provided. The utilization of such films permits relatively low-temperature production of antimicrobial substrates, such as ceramics, metals (e.g., stainless steel, brass, and the like), plastics (e.g., polyimides), glass (e.g., borosilicates, and the like), as compared with typical glazes for ceramics and the like. The inventive films comprise, as the primary antimicrobial active ingredients, certain inorganic antimicrobial compounds, such as, preferably, metal-containing ion-exchange, oxide, and/or zeolite compounds (most preferably, including silver therein as the metal component). Preferably, also, the particular solid substrate to which such films are applied should exhibit substantially high melting and/or heat distortion temperatures to permit high temperature curing of the films to the solid substrate surface (in the range of 300-800° C.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventors: Delwin Jackson, Leland G. Close
  • Publication number: 20030118624
    Abstract: Broadly defined sol-gel films for the coating of solid substrates, wherein such sol-gel films provide effective and durable antimicrobial properties. The utilization of such films permits relatively low-temperature production of antimicrobial substrates, such as ceramics, metals (e.g., stainless steel, brass, and the like), plastics (e.g., polyimides, polyamides, polyacrylics, and the like), glass (e.g., borosilicates, and the like), as compared with typical glazes for ceramics and the like. The inventive films comprise, as the primary antimicrobial active ingredients, certain metal-containing inorganic or organic antimicrobial compounds, such as, preferably, metal-containing ion-exchange, oxide, glass, sulfadiazine, and/or zeolite compounds (most preferably, including silver therein as the metal component).
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Inventors: Delwin Jackson, Leland G. Close
  • Publication number: 20030026914
    Abstract: Durable non-electrically conductive metal treatments (such as coatings or finishes) for yarns and textile fabrics. Such treatments preferably comprise silver and/or silver ions; however, other metals, such as zinc, iron, copper, nickel, cobalt, aluminum, gold, manganese, magnesium, and the like, may also be present or alternatively utilized. Such a treatment provides, as one example, an antimicrobial fiber and/or textile fabric which remains on the surface and does not permit electrical conductivity over the surface. The treatment is extremely durable on such substrates; after a substantial number of standard launderings and dryings, the treatment does not wear away in any appreciable amount and thus the substrate retains its antimicrobial activity (or other property).
    Type: Application
    Filed: May 20, 2002
    Publication date: February 6, 2003
    Inventors: David E. Green, Dirk L. Van Hyning, Leland G. Close, Shulong Li, Robert J. Goulet
  • Publication number: 20020192386
    Abstract: Durable antimicrobial treatments for textile fabrics are provided. Such treatments preferably comprise silver ions, particularly as constituents of inorganic metal salts or zeolites. This particular treatment requires the presence of a resin binder, either as a silver-ion overcoat or as a component of a dye bath mixture admixed with the silver-ion antimicrobial compound. Such a treatment is extremely durable on such substrates; after a substantial number of standard launderings and dryings, the treatment does not wear away in any appreciable amount and thus the substrate retains its antimicrobial activity. The particular treatment method, as well as the treated textile fabrics are also encompassed within this invention.
    Type: Application
    Filed: May 15, 2002
    Publication date: December 19, 2002
    Inventors: David E. Green, Leland G. Close, Dirk L. Van Hyning
  • Patent number: 6479144
    Abstract: Polyurethane elastomer yams (particularly spandex) containing certain silver-based antimicrobial formulations therein are provided. This invention relates to polyurethane elastomer yams (particularly spandex) containing certain silver-based antimicrobial formulations therein. Such formulations comprise antimicrobial compounds, such as, preferably, triclosan and/or silver-containing ion-exchange resins, such as zirconium phosphate, glass, and/or zeolite compounds. The inventive spandex yarns exhibit excellent antimicrobial qualities as well as surprisingly good anti-tack/frictional characteristics. As a result, antimicrobial spandex yams are provided which exhibit ease in processing, particularly in further knitting, weaving, etc., to produce fabrics therefrom. Such fabrics are also encompassed within this invention.
    Type: Grant
    Filed: December 4, 2000
    Date of Patent: November 12, 2002
    Assignee: Milliken & Company
    Inventors: Randy D. Petrea, Robert L. Schuette, Leland G. Close, Jr., Shirley Anne Whiteside
  • Publication number: 20020127402
    Abstract: Durable antimicrobial treatments for high pressure treatments (such as package dyeing) for specific dyed yarns for further incorporation within textile fabrics are provided. Such treatments preferably comprise silver ions, particularly as constituents of inorganic metal salts or zeolites. This particular treatment requires the presence of a resin binder as a component of the dye bath formulation admixed with the silver-ion antimicrobial compound, the formulation then forced through a target yarn spool in order to provide a finish over substantially all of the target yarn. The yarn may then be knit, woven, pressed, laid-in, etc., into a textile fabric exhibiting antimicrobial properties. Such a treatment has been found to be extremely durable on such substrates; after a substantial number of standard launderings and dryings, the treatment does not wear away in any appreciable amount and thus the substrate retains its antimicrobial activity.
    Type: Application
    Filed: May 15, 2002
    Publication date: September 12, 2002
    Inventors: David E. Green, Leland G. Close
  • Publication number: 20020102893
    Abstract: Polyurethane elastomer yarns (particularly spandex) containing certain silver-based antimicrobial formulations therein are provided. This invention relates to polyurethane elastomer yarns (particularly spandex) containing certain silver-based antimicrobial formulations therein. Such formulations comprise antimicrobial compounds, such as, preferably, triclosan and/or silver-containing ion-exchange resins, such as zirconium phosphate, glass, and/or zeolite compounds. The inventive spandex yarns exhibit excellent antimicrobial qualities as well as surprisingly good anti-tack/frictional characteristics. As a result, antimicrobial spandex yarns are provided which exhibit ease in processing, particularly in further knitting, weaving, etc., to produce fabrics therefrom. Such fabrics are also encompassed within this invention.
    Type: Application
    Filed: December 4, 2000
    Publication date: August 1, 2002
    Inventors: Randy D. Petrea, Robert L. Schuette, Leland G. Close, Shirley Anne Whiteside