Patents by Inventor Lena Staszewski

Lena Staszewski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10670584
    Abstract: The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners. Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli. Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: June 2, 2020
    Assignee: Firmenich Incorporated
    Inventors: Mark Zoller, Xiaodong Li, Lena Staszewski, Shawn O'Connell, Sergey Zozulya, Jon Elliot Adler, Hong Xu, Fernando Echeverri
  • Publication number: 20190086393
    Abstract: The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners. Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli. Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions.
    Type: Application
    Filed: September 13, 2018
    Publication date: March 21, 2019
    Inventors: Mark ZOLLER, Xiaodong LI, Lena Staszewski, Shawn O'Connell, Sergey Zozulya, Jon Elliot Adler, Hong Xu, Fernando Echeverri
  • Patent number: 10114009
    Abstract: The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners. Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli.
    Type: Grant
    Filed: June 5, 2017
    Date of Patent: October 30, 2018
    Assignee: Senomyx, Inc.
    Inventors: Mark Zoller, Xiaodong Li, Lena Staszewski, Shawn O'Connell, Sergey Zozulya, Jon Elliot Adler, Hong Xu, Fernando Echeverri
  • Publication number: 20170363615
    Abstract: The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1 R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners. Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli. Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions.
    Type: Application
    Filed: June 5, 2017
    Publication date: December 21, 2017
    Inventors: Mark ZOLLER, Xiaodong LI, Lena Staszewski, Shawn O'Connell, Sergey Zozulya, Jon Elliot Adler, Hong Xu, Fernando Echeverri
  • Patent number: 9671390
    Abstract: The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners. Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli.
    Type: Grant
    Filed: September 21, 2015
    Date of Patent: June 6, 2017
    Assignee: SENOMYX, INC.
    Inventors: Mark Zoller, Xiaodong Li, Lena Staszewski, Shawn O'Connell, Sergey Zozulya, Jon Elliot Alder, Hong Xu, Fernando Echeverri
  • Patent number: 9459250
    Abstract: The invention relates to compounds that specifically bind a T1R1/T1R3 or T1R2/T1R3 receptor or fragments or sub-units thereof. The present invention also relates to the use of hetero-oligomeric and chimeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli. Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions. The use of these cells lines in cell-based assays to identify umami and sweet taste modulatory compounds is also provided, particularly high throughput screening assays that detect receptor activity by use of fluorometric imaging.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: October 4, 2016
    Assignee: SENOMYX, INC.
    Inventors: Xiaodong Li, Lena Staszewski, Hong Xu
  • Publication number: 20160178616
    Abstract: The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners. Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli.
    Type: Application
    Filed: September 21, 2015
    Publication date: June 23, 2016
    Inventors: Mark ZOLLER, Xiaodong LI, Lena Staszewski, Shawn O'Connell, Sergey Zozulya, Jon Elliot Alder, Hong Xu, Fernando Echeverri
  • Patent number: 9176130
    Abstract: The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners. Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli.
    Type: Grant
    Filed: May 14, 2014
    Date of Patent: November 3, 2015
    Assignee: Senomyx, Inc.
    Inventors: Mark Zoller, Xiaodong Li, Lena Staszewski, Shawn O'Connell, Sergey Zozulya, Jon Elliot Adler, Hong Xu, Fernando Echeverri
  • Publication number: 20150299293
    Abstract: Newly identified mammalian taste-cell-specific G protein-coupled receptors, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in taste signaling, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for representing taste perception of a particular tastant in a mammal are also described, as are methods for generating novel molecules or combinations of molecules that elicit a predetermined taste perception in a mammal, and methods for simulating one or more tastes. Further, methods for stimulating or blocking taste perception in a mammal are also disclosed.
    Type: Application
    Filed: April 27, 2015
    Publication date: October 22, 2015
    Inventors: Jon Elliot ADLER, Sergey Zozulya, Xiaodong LI, Shawn O'CONNELL, Lena STASZEWSKI
  • Patent number: 9091686
    Abstract: The invention relates to compounds that specifically bind a T1R1/T1R3 or T1R2/T1R3 receptor or fragments or sub-units thereof. The present invention also relates to the use of hetero-oligomeric and chimeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli. Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions. The use of these cells lines in cell-based assays to identify umami and sweet taste modulatory compounds is also provided, particularly high throughput screening assays that detect receptor activity by use of fluorometric imaging.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: July 28, 2015
    Assignee: SENOMYX, INC.
    Inventors: Xiaodong Li, Lena Staszewski, Hong Xu
  • Patent number: 9040247
    Abstract: Newly identified mammalian taste-cell-specific G protein-coupled receptors, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in taste signaling, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for representing taste perception of a particular tastant in a mammal are also described, as are methods for generating novel molecules or combinations of molecules that elicit a predetermined taste perception in a mammal, and methods for simulating one or more tastes. Further, methods for stimulating or blocking taste perception in a mammal are also disclosed.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: May 26, 2015
    Assignee: SENOMYX, INC.
    Inventors: Jon Elliot Adler, Sergey Zozulya, Xiaodong Li, Shawn O'Connell, Lena Staszewski
  • Publication number: 20150064112
    Abstract: The invention relates to compounds that specifically bind a T1R1/T1R3 or T1R2/T1R3 receptor or fragments or sub-units thereof. The present invention also relates to the use of hetero-oligomeric and chimeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli. Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions. The use of these cells lines in cell-based assays to identify umami and sweet taste modulatory compounds is also provided, particularly high throughput screening assays that detect receptor activity by use of fluorometric imaging.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 5, 2015
    Inventors: XIAODONG LI, LENA STASZEWSKI, HONG XU
  • Publication number: 20150024407
    Abstract: Newly identified mammalian taste-cell-specific G protein-coupled receptors which function as hetero-oligomeric complexes in the sweet taste transduction pathway, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in sweet taste signaling as hetero-oligomeric complexes, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for identifying putative taste modulating compounds using such hetero-oligomeric complexes also described, as is a novel surface expression facilitating peptide useful for targeting integral plasma membrane proteins to the surface of a cell.
    Type: Application
    Filed: July 22, 2014
    Publication date: January 22, 2015
    Inventors: Jon E. ADLER, Xiaodong LI, Lena STASZEWSKI, Hong XU, Fernando ECHEVERRI
  • Publication number: 20140329255
    Abstract: The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners. Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli.
    Type: Application
    Filed: May 14, 2014
    Publication date: November 6, 2014
    Applicant: SENOMYX, INC.
    Inventors: Mark ZOLLER, Xiaodong LI, Lena STASZEWSKI, Shawn O'CONNELL, Sergey ZOZULYA, Jon Elliot ADLER, Hong XU, Fernando ECHEVERRI
  • Patent number: 8846326
    Abstract: The invention relates to compounds that specifically bind a T1R1/T1R3 or T1R2/T1R3 receptor or fragments or sub-units thereof. The present invention also relates to the use of hetero-oligomeric and chimeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli. Further, the invention relates to the constitutive of cell lines that stably or transiently co-express a combination of T1R1 and T1R3; or T1R2 and T1R3; under constitutive or inducible conditions. The use of these cells lines in cell-based assays to identify umami and sweet taste modulatory compounds is also provided, particularly high throughput screening assays that detect receptor activity by use of fluorometric imaging.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: September 30, 2014
    Assignee: Senomyx, Inc.
    Inventors: Xiaodong Li, Lena Staszewski, Hong Xu
  • Patent number: 8815525
    Abstract: Newly identified mammalian taste-cell-specific G protein-coupled receptors, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in taste signaling, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for representing taste perception of a particular tastant in a mammal are also described, as are methods for generating novel molecules or combinations of molecules that elicit a predetermined taste perception in a mammal, and methods for simulating one or more tastes. Further, methods for stimulating or blocking taste perception in a mammal are also disclosed.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: August 26, 2014
    Assignee: Senomyx, Inc.
    Inventors: Jon Elliot Adler, Sergey Zozulya, Xiadong Li, Shawn O'Connell, Lena Staszewski
  • Patent number: 8816057
    Abstract: Newly identified mammalian taste-cell-specific G protein-coupled receptors, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in taste signaling, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for representing taste perception of a particular tastant in a mammal are also described, as are methods for generating novel molecules or combinations of molecules that elicit a predetermined taste perception in a mammal, and methods for simulating one or more tastes. Further, methods for stimulating or blocking taste perception in a mammal are also disclosed.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: August 26, 2014
    Assignee: Senomyx, Inc.
    Inventors: Jon Elliot Adler, Sergey Zozulya, Xiaodong Li, Shawn O'Connell, Lena Staszewski
  • Patent number: 8809000
    Abstract: Newly identified mammalian taste-cell-specific G protein-coupled receptors which function as hetero-oligomeric complexes in the sweet taste transduction pathway, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in sweet taste signaling as hetero-oligomeric complexes, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for identifying putative taste modulating compounds using such hetero-oligomeric complexes also described, as is a novel surface expression facilitating peptide useful for targeting integral plasma membrane proteins to the surface of a cell.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: August 19, 2014
    Assignee: Senomyx, Inc.
    Inventors: Jon E. Adler, Xiaodong Li, Lena Staszewski, Hong Xu, Fernando Echeverri
  • Patent number: 8802377
    Abstract: The present invention relates to the discovery that the T1R receptors assemble to form functional taste receptors. Particularly, it has been discovered that co-expression of T1R1 and T1R3 results in a taste receptor that responds to umami taste stimuli, including monosodium glutamate. Also, it has been discovered that co-expression of the T1R2 and T1R3 receptors results in a taste receptor that responds to sweet taste stimuli including naturally occurring and artificial sweeteners. Also the present invention relates to the use of hetero-oligomeric taste receptors comprising T1R1/T1R3 and T1R2/T1R3 in assays to identify compounds that respectively respond to umami taste stimuli and sweet taste stimuli.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: August 12, 2014
    Assignee: Senomyx, Inc.
    Inventors: Mark Zoller, Xiaodong Li, Lena Staszewski, Shawn O'Connell, Sergey Zozulya, Jon Elliot Adler, Hong Xu, Fernando Echeverri
  • Patent number: 8802379
    Abstract: Newly identified mammalian taste-cell-specific G protein-coupled receptors, and the genes and cDNA encoding said receptors are described. Specifically, T1R G protein-coupled receptors active in taste signaling, and the genes and cDNA encoding the same, are described, along with methods for isolating such genes and for isolating and expressing such receptors. Methods for representing taste perception of a particular tastant in a mammal are also described, as are methods for generating novel molecules or combinations of molecules that elicit a predetermined taste perception in a mammal, and methods for simulating one or more tastes. Further, methods for stimulating or blocking taste perception in a mammal are also disclosed.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: August 12, 2014
    Assignee: Senomyx, Inc.
    Inventors: Jon Elliot Adler, Sergey Zozulya, Xiadong Li, Shawn O'Connell, Lena Staszewski