Patents by Inventor Leneesh Raghavan

Leneesh Raghavan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10830835
    Abstract: Magnetic field sensors and sensing methods are provided. A magnetic sensor includes at least one magnetic field sensor element configured to generate an analog input sensor signal in response to a magnetic field; an inverting amplifier arranged on an analog signal path and configured to generate an analog output sensor signal having a gained value with respect to the analog input sensor signal; a switchable compensation capacitor disposed in a negative feedback path of the inverting amplifier, where the switchable compensation capacitor is configured to control a bandwidth of the analog signal path based on configuration information; and a digital controller configured to receive at least one measurement parameter, generate the configuration information based on the at least one measurement parameter, and transmit the configuration information to the switchable compensation capacitor for adjusting the bandwidth of the analog signal path.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: November 10, 2020
    Assignee: Infineon Technologies AG
    Inventors: Leneesh Raghavan, Mario Motz
  • Publication number: 20200150194
    Abstract: Magnetic field sensors and sensing methods are provided. A magnetic sensor includes at least one magnetic field sensor element configured to generate an analog input sensor signal in response to a magnetic field; an inverting amplifier arranged on an analog signal path and configured to generate an analog output sensor signal having a gained value with respect to the analog input sensor signal; a switchable compensation capacitor disposed in a negative feedback path of the inverting amplifier, where the switchable compensation capacitor is configured to control a bandwidth of the analog signal path based on configuration information; and a digital controller configured to receive at least one measurement parameter, generate the configuration information based on the at least one measurement parameter, and transmit the configuration information to the switchable compensation capacitor for adjusting the bandwidth of the analog signal path.
    Type: Application
    Filed: January 16, 2020
    Publication date: May 14, 2020
    Applicant: Infineon Technologies AG
    Inventors: Leneesh RAGHAVAN, Mario MOTZ
  • Patent number: 10578681
    Abstract: Magnetic field sensors and sensing methods are provided. A magnetic sensor includes at least one magnetic field sensor element configured to generate an analog input sensor signal in response to a magnetic field, an inverting amplifier configured to generate an analog output sensor signal having a gained value with respect to the analog input sensor signal, a programmable current divider disposed in a negative feedback path of the inverting amplifier such that the gained value is dependent on an effective feedback resistor value of the programmable current divider, and a digital controller configured to receive at least one measurement parameter, generate a codeword based on the at least one measurement parameter, and transmit the codeword to the programmable current divider for compensating the gained value. The effective feedback resistor value is adjusted based on the codeword received by the programmable current divider.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: March 3, 2020
    Assignee: Infineon Technologies AG
    Inventors: Leneesh Raghavan, Mario Motz
  • Publication number: 20190128972
    Abstract: Magnetic field sensors and sensing methods are provided. A magnetic sensor includes at least one magnetic field sensor element configured to generate an analog input sensor signal in response to a magnetic field, an inverting amplifier configured to generate an analog output sensor signal having a gained value with respect to the analog input sensor signal, a programmable current divider disposed in a negative feedback path of the inverting amplifier such that the gained value is dependent on an effective feedback resistor value of the programmable current divider, and a digital controller configured to receive at least one measurement parameter, generate a codeword based on the at least one measurement parameter, and transmit the codeword to the programmable current divider for compensating the gained value. The effective feedback resistor value is adjusted based on the codeword received by the programmable current divider.
    Type: Application
    Filed: October 26, 2017
    Publication date: May 2, 2019
    Applicant: Infineon Technologies AG
    Inventors: Leneesh RAGHAVAN, Mario MOTZ
  • Patent number: 10261137
    Abstract: A sensor including a sensing device and a processor. The sensing device can be configured to sense one or more environmental conditions, such as one or more magnetic fields, and generate a sensor signal based on the sensed environmental condition(s). The processor can be configured to determine a gain mode and/or a zero-point mode of the sensor. Based on the determined gain and/or zero-point modes and the sensor signal, the processor can generate an output signal. The processor can include a voltage generator configured to generate a ratiometric voltage and/or a regulated voltage based on a supply voltage of the sensor. The processor can receive an external voltage. The gain mode and/or the zero-point mode can be independently determined based on the ratiometric, regulated, or external voltages. The ratiometric or regulated voltage can be output as a second output to form a differential output.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: April 16, 2019
    Assignee: Infineon Technologies AG
    Inventors: Mario Motz, Leneesh Raghavan
  • Publication number: 20170131366
    Abstract: A sensor including a sensing device and a processor. The sensing device can be configured to sense one or more environmental conditions, such as one or more magnetic fields, and generate a sensor signal based on the sensed environmental condition(s). The processor can be configured to determine a gain mode and/or a zero-point mode of the sensor. Based on the determined gain and/or zero-point modes and the sensor signal, the processor can generate an output signal. The processor can include a voltage generator configured to generate a ratiometric voltage and/or a regulated voltage based on a supply voltage of the sensor. The processor can receive an external voltage. The gain mode and/or the zero-point mode can be independently determined based on the ratiometric, regulated, or external voltages. The ratiometric or regulated voltage can be output as a second output to form a differential output.
    Type: Application
    Filed: November 9, 2015
    Publication date: May 11, 2017
    Inventors: Mario Motz, Leneesh Raghavan
  • Patent number: 9258005
    Abstract: A device for converting analog to digital is disclosed. The device includes a dual mode converter and a control unit. The dual mode converter has a coarse mode and a fine mode. The dual mode converter is configured to receive an input signal and convert the input signal to a digital output having a selected resolution. The control unit is coupled to the dual mode converter and is configured to operate the converter in the coarse mode until a coarse approximation is obtained and to operate the converter in the fine mode until a fine approximation is obtained having the selected resolution. The fine mode includes multi-bit incremental tracking.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: February 9, 2016
    Assignee: Infineon Technologies AG
    Inventors: Mario Motz, Wolfgang Scherr, Christof Bodner, Leneesh Raghavan
  • Publication number: 20150381194
    Abstract: A device for converting analog to digital is disclosed. The device includes a dual mode converter and a control unit. The dual mode converter has a coarse mode and a fine mode. The dual mode converter is configured to receive an input signal and convert the input signal to a digital output having a selected resolution. The control unit is coupled to the dual mode converter and is configured to operate the converter in the coarse mode until a coarse approximation is obtained and to operate the converter in the fine mode until a fine approximation is obtained having the selected resolution. The fine mode includes multi-bit incremental tracking.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 31, 2015
    Inventors: Mario Motz, Wolfgang Scherr, Christof Bodner, Leneesh Raghavan