Patents by Inventor Lenka Van Sint Fiet

Lenka Van Sint Fiet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132890
    Abstract: The invention relates to nucleic acid molecules for pseudouridylation of a target uridine in a target RNA in a mammalian cell, wherein the nucleic acid molecule comprises a guide region capable of forming a partially double stranded nucleic acid complex with the target RNA comprising the target uridine, wherein the partially double stranded nucleic acid complex is capable of engaging a mammalian pseudouridylation enzyme, wherein the guide region assists in positioning the target uridine in the partially double stranded nucleic acid complex for it to be converted to a pseudouridine by the mammalian pseudouridylation enzyme.
    Type: Application
    Filed: September 27, 2023
    Publication date: April 25, 2024
    Applicants: University of Rochester, ProQR Therapeutics II B.V.
    Inventors: Bart KLEIN, Janne Juha TURUNEN, Lenka VAN SINT FIET, Pedro Duarte Morais Fernandes Arantes DA SILVA, Julien Auguste Germain BOUDET, Yi-Tao YU, Hironori ADACHI, Meemanage De ZOYSA
  • Patent number: 11866702
    Abstract: The invention relates to nucleic acid molecules for pseudouridylation of a target uridine in a target RNA in a mammalian cell, wherein the nucleic acid molecule comprises a guide region capable of forming a partially double stranded nucleic acid complex with the target RNA comprising the target uridine, wherein the partially double stranded nucleic acid complex is capable of engaging a mammalian pseudouridylation enzyme, wherein the guide region assists in positioning the target uridine in the partially double stranded nucleic acid complex for it to be converted to a pseudouridine by the mammalian pseudouridylation enzyme.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: January 9, 2024
    Assignees: University of Rochester, ProQR Therapeutics II B.V.
    Inventors: Bart Klein, Janne Juha Turunen, Lenka Van Sint Fiet, Pedro Duarte Morais Fernandes Arantes Da Silva, Julien Auguste Germain Boudet, Yi-Tao Yu, Hironori Adachi, Meemanage De Zoysa
  • Patent number: 11851656
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA sequence in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a non-complementary nucleotide in a position opposite to the nucleotide to be edited in the target RNA sequence.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: December 26, 2023
    Assignee: ProQR Therapeutics II B.V.
    Inventors: Janne Juha Turunen, Antti Aalto, Bart Klein, Lenka Van Sint Fiet, Julien Auguste Germain Boudet
  • Publication number: 20230323346
    Abstract: The invention relates to a composition comprising a set of two single stranded antisense oligonucleotides (AONs), wherein one AON is the ‘Editing AON’ and the other AON is the ‘Helper AON’, for use in the deamination of a target adenosine in a target RNA to an inosine, wherein the Editing AON is complementary to a stretch of nucleotides in the target RNA that includes the target adenosine, wherein the Helper AON is complementary to a stretch of nucleotides in the target RNA that is separate from the stretch of nucleotides that is complementary to the Editing AON, wherein the Helper AON has a length of 16 to 22 nucleotides and the Editing AON has a length of 16 to 22 nucleotides.
    Type: Application
    Filed: July 22, 2021
    Publication date: October 12, 2023
    Inventors: Lenka VAN SINT FIET, Alicia SOLER CANTÓN
  • Publication number: 20230279392
    Abstract: The invention relates to antisense oligonucleotide that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a cytidine (a non-complementary nucleotide) or a uridine in a position opposite to the target adenosine to be edited in the target RNA region.
    Type: Application
    Filed: April 6, 2023
    Publication date: September 7, 2023
    Applicant: ProQR Therapeutics II B.V.
    Inventors: Janne Juha TURUNEN, Petra Geziena DE BRUIJN, Bart KLEIN, Roxana Simona REDIS, Lenka VAN SINT FIET
  • Publication number: 20230235322
    Abstract: An antisense oligonucleotide (AON) capable of inhibiting ADAR-mediated deamination of a target adenosine present in an editing-site sequence (ESS) of a target RNA molecule, wherein under physiological conditions the ESS would hybridize with an editing-site complementary sequence (ESCS) of an RNA molecule to form a double stranded RNA complex, wherein the AON comprises a sequence configured to compete with the ESCS for hybridization with the ESS.
    Type: Application
    Filed: April 9, 2020
    Publication date: July 27, 2023
    Inventors: Janne Juha Turunen, Lenka Van Sint Fiet, Lisanne Alieda Van Wissen
  • Patent number: 11649454
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a cytidine (a non-complementary nucleotide) or a uridine in a position opposite to the target adenosine to be edited in the target RNA region.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: May 16, 2023
    Assignee: ProQR Therapeutics II B.V.
    Inventors: Janne Juha Turunen, Petra Geziena De Bruijn, Bart Klein, Roxana Simona Redis, Lenka Van Sint Fiet
  • Publication number: 20230039928
    Abstract: The invention relates to RNA editing oligonucleotides (EONs) that can bring about specific editing of a target nucleotide (adenosine) in a target RNA molecule in a eukaryotic cell, wherein said oligonucleotide is for use in the treatment of Stargardt disease, and more preferably for the deamination of target adenosines present in the ABCA4 pre-mRNA or ABCA4 mRNA.
    Type: Application
    Filed: December 23, 2020
    Publication date: February 9, 2023
    Inventors: Jim Swildens, Lenka Van Sint Fiet, Tess Hoogeboom, Saskia Jacoba Petronella Haast
  • Publication number: 20220340900
    Abstract: The invention relates to single-stranded RNA editing antisense oligonucleotides (AONs) for binding to a target RNA molecule for deaminating a target nucleotide, preferably an adenosine, present in the target RNA molecule and recruiting, in a cell, preferably a human cell, an enzyme with nucleotide deamination activity, preferably an ADAR enzyme, to deaminate the target nucleotide in the target RNA molecule. The AONs carry at least one methylphosphonate-modified internucleosidic linkage on a position that would render the AON more stable in comparison to an AON not carrying that methylphosphonate modification at that position.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 27, 2022
    Inventors: Janne Juha Turunen, Bart Klein, Lenka Van Sint Fiet, Antti Aalto, Cherie Paige Kemmel, Tess Hoogeboom, Lisanne Alieda Van Wissen
  • Publication number: 20220307023
    Abstract: The invention relates to single-stranded RNA editing antisense oligonucleotides (AO Ns) for binding to a target RNA molecule for deaminating at least one target adenosine present in the target RNA molecule and recruiting, in a cell, preferably a human cell, an ADAR2 enzyme, to deaminate the at least one target adenosine in the target RNA molecule. The AON according to the invention comprises a cytidine analog at the position opposite the target adenosine, wherein the cytidine analog serves as an H-bond donor at the N3 site, for more efficient RNA editing.
    Type: Application
    Filed: June 12, 2020
    Publication date: September 29, 2022
    Inventors: Janne Juha Turunen, Lenka Van Sint Fiet, Cherie Paige Kemmel, Peter Beal, Erin E. Doherty
  • Publication number: 20220127609
    Abstract: The invention relates to editing oligonucleotides (EONs) for binding to a target nucleic acid and recruiting an enzyme with nucleotide deamination activity to edit the target nucleic acid. The EONs carry phosphonoacetate internucleotide linkage modifications and/or unlocked nucleic acid (UNA) ribose modifications at specified positions and do not carry such modifications on positions that would lower nucleic acid editing efficiency. The selection of positions that should or should not carry a modification is based on computational modelling that revealed incompatibilities of the modifications with the enzyme with nucleotide deamination activity.
    Type: Application
    Filed: February 10, 2020
    Publication date: April 28, 2022
    Inventors: Julien Auguste Germain Boudet, Lenka Van Sint Fiet
  • Publication number: 20220112495
    Abstract: The invention relates to RNA editing oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA molecule in a eukaryotic cell, wherein said oligonucleotide is for use in the treatment of Usher syndrome, and more preferably for the deamination of target adenosines that are part of a premature stop codon present in the USH2A pre-mRNA or USH2A mRNA.
    Type: Application
    Filed: January 27, 2020
    Publication date: April 14, 2022
    Inventors: Lenka Van Sint Fiet, Kalyana Chakravarthi Dulla, Jim Swildens
  • Publication number: 20210340529
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a cytidine non-complementary, nucleotide) or a uridine in a position opposite to the target adenosine to be edited in the target RNA region.
    Type: Application
    Filed: March 26, 2021
    Publication date: November 4, 2021
    Inventors: Janne Juha Turunen, Petra Geziena De Bruijn, Bart Klein, Roxana Simona Redis, Lenka Van Sint Fiet
  • Publication number: 20210238597
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA sequence in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a non-complementary nucleotide in a position opposite to the nucleotide to be edited in the target RNA sequence.
    Type: Application
    Filed: January 20, 2021
    Publication date: August 5, 2021
    Inventors: Janne Juha Turunen, Antti Aalto, Bart Klein, Lenka Van Sint Fiet, Julien Auguste Germain Boudet
  • Patent number: 10988763
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a cytidine (a non-complementary nucleotide) or a uridine in position opposite to the target adenosine to be edited in the target RNA region.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 27, 2021
    Assignee: PROQR THERAPEUTICS II B.V.
    Inventors: Janne Juha Turunen, Petra Geziena De Bruijn, Bart Klein, Roxana Simona Redis, Lenka Van Sint Fiet
  • Publication number: 20210079393
    Abstract: The invention relates to editing oligonucleotides (EONs) that carry 2?-0-methoxyethyl (2?-MOE) ribose modifications at specified positions and that do not carry such modifications on positions that would lower RNA editing efficiency. The selection of positions that should or should not carry a 2?-MOE modification is based on computational modelling that revealed steric clashes between the 2?-MOE modification and mammalian ADAR enzymes.
    Type: Application
    Filed: February 11, 2019
    Publication date: March 18, 2021
    Inventors: Julien Auguste Germain Boudet, Lenka Van Sint Fiet, Janne Juha Turunen
  • Patent number: 10941402
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA sequence in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a non-complementary nucleotide in a position opposite to the nucleotide to be edited in the target RNA sequence.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: March 9, 2021
    Assignee: PROQR THERAPEUTICS II B.V.
    Inventors: Janne Juha Turunen, Antti Aalto, Bart Klein, Lenka Van Sint Fiet, Julien Auguste Germain Boudet
  • Publication number: 20210010002
    Abstract: The invention relates to nucleic acid molecules for pseudouridylation of a target uridine in a target RNA in a mammalian cell, wherein the nucleic acid molecule comprises a guide region capable of forming a partially double stranded nucleic acid complex with the target RNA comprising the target uridine, wherein the partially double stranded nucleic acid complex is capable of engaging a mammalian pseudouridylation enzyme, wherein the guide region assists in positioning the target uridine in the partially double stranded nucleic acid complex for it to be converted to a pseudouridine by the mammalian pseudouridylation enzyme.
    Type: Application
    Filed: March 27, 2019
    Publication date: January 14, 2021
    Inventors: Bart Klein, Janne Juha Turunen, Lenka Van Sint Fiet, Pedro Duarte Morais Fernandes Arantes Da Silva, Julien Auguste Germain Boudet, Yi-Tao Yu, Hironori Adachi, Meemanage De Zoysa
  • Publication number: 20190330622
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a cytidine (a non-complementary nucleotide) or a uridine in position opposite to the target adenosine to be edited in the target RNA region.
    Type: Application
    Filed: June 22, 2017
    Publication date: October 31, 2019
    Inventors: Janne Juha Turunen, Petra Geziena De Bruijn, Bart Klein, Roxana Simona Redis, Lenka Van Sint Fiet
  • Publication number: 20190218552
    Abstract: The invention relates to antisense oligonucleotides that are capable of bringing about specific editing of a target nucleotide (adenosine) in a target RNA sequence in a eukaryotic cell, wherein said oligonucleotide does not, in itself, form an intramolecular hairpin or stem-loop structure, and wherein said oligonucleotide comprises a non-complementary nucleotide in a position opposite to the nucleotide to be edited in the target RNA sequence.
    Type: Application
    Filed: August 31, 2017
    Publication date: July 18, 2019
    Inventors: Janne Juha Turunen, Antti Aalto, Bart Klein, Lenka Van Sint Fiet, Julien Auguste Germain Boudet